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ABSTRACT 297 Y.,S/

23 different porous tungsten materials were tested to
determine thir cesium ion emitting characteristics at a j+ up
to 25 ma/cm“. Improved performance with a low neutral fraction
and low critical temperature at high j+ was noted as the manu-
facturers increased the surface pore density by use of small,
graded, spherical W powder. Effects on porous W of carbiding,
O, Cr, Be, Ta, Ti and Zr were studied. Evaporative lifetimes
of Cu, Cr, Be, Ni, Fe, and Ti on W vs, temperature, coverage,

and oxygenation are presented.
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PROGRAM OF ANALYTICAL AND EXPERIMENTAL STUDY OF POROUS
METAL IONIZERS

by A. Cho, D. F. Hall, and H. Shelton

SUMMARY

The first part of this report gives the evaporative life-
times of copper, chromium, beryllium, nickel, iron, and titanium
on solid tungsten as functions of temperature, coverage, and
cleanliness., These lifetimes were determined for use in pre-
dicting the suitability of the materials tested for the accelera-
tor electrode. The experiments demonstrated that copper is
acceptable as an accelerator material, nickel and iron are possi-
bly acceptable, beryllium and chromium should probably be avoided
because of their interactions with oxygen, and titanium and
zirconium are strictly to be avoided.

In a second set of experiments 23 porous tungsten materials
that were fabricated by different manufacturers and had varying
parameters were tested to determine their cesium-ion-emitting
properties, particularly with respect to neutral fraction and
critical temperature at ion current densities up to 25 ma/c 2.
Most clean porous tungsten manufactured of fine-graded spherical
powder yielded a neutral fraction of about 1 to 2 percent at
about 1450°K and a current density of 20 ma/cmz. Substantially
fewer neutrals were observed from oxygenated surfaces, The
best results from tests made without oxygen were obtained with
carbided high-pore-count material, which yielded a 1/2 percent
neutral fraction at 1440°K and 20 ma/cm2 current density.
Results of this second series of tests are presented in two ways -
on data sheets showing the neutral fraction versus temperature
and current density for each test, and on engineering test
sheets that include permeability and critical temperature
measurements.,



EVAPORATIVE LIFETIME EXPERIMENT

INTRODUCTION

It is common practice in developing ion engines using cesium
contact ionization to use an accelerator made from copper, since
this material, if it is evaporated or sputtered onto the porous
tungsten, simply re-evaporates and in no way affects the ioniza-
tion of the cesium. However, copper has a few disadvantages —
it melts at low temperature, it gets soft and sometimes sags, and
its sputtering yield, weight, expansion coefficient, and possibly
other properties may not be optimum, It therefore seens desirable
either to strengthen the copper with additives or replace it with
some better material. Such a material must be compatible with
porous tungsten, complete compatibility dictating that the material
must re-evaporate and that the equilibrium amount present on the
porous tungsten surface will not adversely alter the ion-emission
characteristics of the systen.

This experiment was therefore conducted to measure the
residence time before re-evaporation of some of the materials
considered for use in accelerators. From the residence time,
the equilibrium coverage of a material can easily be calculated.

BASIC THEORY

The evaporative (or adsorption) lifetime t of a material
on a substrate is defined throughout this report as

T = cr/l"ev s (1)
where o is the surface coverage of the material in particles/cm2
and Pev is the evaporative particle current demnsity (or flux)
in particles/cmz/sec. At equilibrium the arrival rate of atoms

Par is equal to Pev’ so that




o .=I__ 1, 2)

where Geq is the equilibrium surface coverage of the material.
Therefore, a measurement of v at a particular arrival rate
allows a direct calculation of the equilibrium coverage for

this value of Par'

The surface coverage is often specified as a fraction of a
monolayer or 0, one monolayer being defined as the coverage when
the most readily available sites on the surface are completely
occupied. 1I. Langm.uir1 found this coverage for cesium adions
on a tungsten surface to be 3.6 x 1014 particles/cmg -- one for
every four tungsten atoms, Throughout this report a monolayer
is considered to be about 1.5 x 1015 particles per cmg, which
is close to the average tungsten density on all the crystal
faces, For adsorbed cesium, which affects the work function
and the evaporation energy of adjacent cesium adions more than
any other material, the change of work function Ag is 10 x Q.
If the tolerable Ag is 0.1 volt, then the maximum tolerable
coverage is 0,01, or 1 percent of a monolayer. Therefore, since
cesium is the most active material known, no material on tung-
sten is objectionable in amounts of less than 1 percent of a

monolayer, or 1.5 x 1013 particles/cm?.

To estimate the maximum evaporation lifetime of a material
for it to be of interest as an accelerator material, consider
a porous tungsten ionizer to be operating at 25 ma/cm? and
back sputtering from the accelerator to be 1 percent. In
this case the arrival rate of foreign atoms from the accelerator
would be approximately 1.5 x 1015 (one monolayer) per second.
From Eq. (2) and the upper-bound surface coverage quoted above,
the maximum lifetime of interest would be approximately 10 ms.
If the lifetime of a material that causes an adverse work-
function change with 6 = 0.01 were greater than 10 ms at the

operation temperature of tungsten, a larger neutral fraction



would result and the temperature would have to be raised
to improve results,

In addition to being a function of temperature, lifetime is
also sometimes a function of coverage. This is particularly true
if adsorption affects the work function. Conversely, when a
wide range of lifetimes is observed as a function of coverage,
it can be confidently expected2 that the material will have a
large effect on the work function and hence on cesium neutrals
(and possibly critical temperature) when the tungsten is used
as an ion emitter. With such materials a low coverage is re-
quired, so again attention is directed to finding the lifetime
at low coverages (0 < 0.05). These lifetimes are designated

T =0)"

Fortunately, in this experiment lifetimes are méébured
directly in seconds and are not affected by calibration constants;
consequently great confidence can usually be placed on the values
obtained. (A less desirable approach would be to measure ad-
sorption energy, which then must be used in a formula with assumed
constants to obtain a derived lifetime,)

Lifetime can be analytically expressed as a function of the
reciprocal temperature by

v, [em (e/xmE, ] , @)

“
|

where Eev is the heat of evaporation (or adsorption) in volts,

T is the absolute temperature in degrees Kelvin, k is Boltzman's
constant and equals 1,38 x 10-16 ergs/OK, and v is interpreted
as the period of thermal vibration (1/'-1:o = vy, where hy = kT,
hence T ¥ /KT ¥ 3 x 10712 sec. at 1500°K). Although the
constants To and Eev are tabulated for the materials tested,
primary attention in reading the test results should be directed

to the actual plot of 1t versus temperature.

o




THEORY OF EXPERIMENT

In this experiment lifetimes were determined from the
transient behavior of atoms as they re-evaporated from a hot
tungsten ribbon when an atomic beam was started or stopped by
a mechanical shutter. The theory of the experiment is given
in the following paragraphs.

If lifetime is a constant independent of the coverages
involved (which is true at low coverages) and the sticking
probability is 1.0, then

do _ _G

T = Tar 7 )
which upon integration becomes

0 = Ogq [1 - exp (- t/r)] (5)

for 0 = 0 at t = 0., This equation shows that when a shutter is
opened to allow a constant stream of atoms to impinge on clean
tungsten, the coverage builds up and approaches equilibrium
coverage in an exponential manner, the time constant being equal
to the lifetime, Since the re-evaporation flux is o/t and 7T is
a constant, the re-evaporation flux also increases exponentially
as it approaches the arrival rate, It is this re-evaporation
flux that is measured in this experiment. .

Upon complete or partial closing of the shutter, the re-
evaporation and coverage again exponentially approach their
new equilibrium values (zero if the shutter is completely closed).
The time constant can be determined from the time required for 63
percent of the change to occur or from the intercept of the
initial slope of re~evaporation flux with the equilibrium value,
The latter method has been used because the value obtained is
not affected if the lifetime changes with coverage. This method
yields the "low-coverage" lifetime, T = 0)’ provided the tungsten
has been cleaned of any previous deposition.

5



Determining 1t is more difficult for larger coverages of
materials where the lifetime varies with the coverage since in
such cases the transient response is more complicated. When
the effect is a small perturbation, the over-all departure from
exponential is very slight, but the difference is most noticeable
in the initial slopes obtained upon opening and closing of the
shutter. As the change of lifetime with coverage increases the
curve becomes more complicated, usually displaying inflection
points and small initial slopes followed by much larger slopes.
These phenomena are illustrated in Figure 1.

The distance y in Figure 1(d) is proportional to the rate
at which material is adhering to the tungsten. (Since the
equilibrium re-evaporation rate is equal to the arrival rate,

y is the difference between what is going on and what is coming
off.) Therefore

o=k [ ydt,

where k is the calibration constant determined by Par = ky(0).
At any given time to

t
o=Kk g © ydt and

r, =k [y -y,
hence
T [G(to)] = rf;
K £to ydt

K0 = 7]

We see that the calibration constant cancels out and that again
the lifetime is determined exactly, but the exact value of
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Figure 1, Waveforms of re-evaporated material from hot
tungsten versus time during opening and closing
the atomic beam shutter,
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o to which this lifetime is to be ascribed is dependent on
the accuracy of calibration, which is the most difficult and
uncertain aspect of the experiment.

Note that it is not difficult to find the exact functional
relationship between the lifetime and the fractional value of
some critical coverage. This coverage (the integral in above
equations) might be the limit that is obtained before accumula-
tion of the bulk material, or the coverage where a near dis-

continuity in lifetime occurs. When such a critical coverage
has been observed, we have tended to call it a monolayer and
have ascribed to it a surface density of 1.5 x 1015 particles/cmz.
Measurement of the value of ‘an observed critical coverage requires
an absolute determination of the calibration constant, k., 1In
theory this can be done by using previously determined values of
vapor pressure. We have found, however, that for most materials
the published vapor pressure data cannot be trusted. It is not
known whether this is due to the presence of vacuum or alloying
contaminants in the original experiments, temperature uncertainties,
improper measurements of weight loss, improper assumptions of
sticking probabilities, theoretical extrapolations, or other

causes,

Calibration involves determining scope gain, electron
multiplier gain, ion-to-electron efficiency, spectrometer
transmission, gathering efficiency at the entrance of the spectro-
meter, the bombarding electron current, voltage, and focusing,
ionization efficiency, the thermal velocity of the re-evaporated
atoms, and the angular distribution and distance of evaporated
atoms from the tungsten ribbon. Most of these factors can be
held constant from one experiment to another or set to a reference
value by, say, calibration with a known gas pressure. However,
the ionization efficiency and the ion-to-electron efficiency
cannot be calculated with any certainty. It is felt that the
guess of 6 = 1 for o = 1.5 x 1015/cm? is more accurate than the
value obtained following the most painstaking calibrations when
vapor pressure data are uncertain,

8




DESCRIPTION OF APPARATUS

The experimental apparatus is shown schematically in
Figure 2, and photographs of it are shown as Figures 3 and 4,
The heart of the experiment is an electric quadrupole mass
spectrometer, commonly called a "massenfilter" as designated in
papers by its inventor, Professor W. Paul of Germany. Four
6-~-inch-long, centerless ground stainless steel rods 0.232 inch
in diameter are mounted with 0.200 inch between opposite rods.
These opposite rods are connected together, and a variable-
amplitude, 4,5-mc voltage of magnitudes up to 1200 volts peak
to peak is fed between adjacent pairs. A d-c voltage propor-
tional to the a-c voltage is fed in series with the a-c to
narrow the range of charge-to-mass ratios that can pass through
the rods. As the proportion of d-c voltage is increased, the
resolution increases until beyond a certain point no particles
pass through, With the fraction of d-c (rectified from the
a-c) fixed to give high resolution ( > 100), the a-c voltage
is varied to tune to different atomic mass units, Small
numbers like those of H,0 (18), and N,+CO (28) require a small
voltage, whereas higher numbers for materials such as Cr (52),
Fe (56), Ni (58), and Cu (63) require higher voltage. In
addition, the frequency had to be lowered in testing zirconium
(90).

At one end of the rods a pencil beam of electrons is
directed toward the entrance of the mass spectrometer. Ions
created in the electron beam are funneled into the spectro-
meter as the electrons are stalled.

Ions of the proper charge-to-mass ratio that exit from
the rods are accelerated through a grid onto a tungsten plate
at -2000 volts. Secondary electrons from the impact are multi-
plied in a novel electron multiplier,* which is the vertical box

* Bendix Model 306 Magnetic Electron Multiplier,
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Figure 2. Schematic of experiment to measure the binding
energy of assorted metals to tungsten.
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Figure 4. Photograph showing details such as oven, shutter,
and ionizing filament of lifetime experiment.
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to the right in Figure 3. This multiplier works with cycloidal
electron trajectories in a crossed electric and magnetic field.
Two resistive films coated on glass (about 150 megohms) about
3/16 inch apart have 1500 volts along their length. One which is
attached to the ion target and on which multiplication occurs,
has a voltage running from about -2000 to -500 volts; the other
is 500 volts positive with respect to the first at all points
along an approximate 2-inch length, with voltages running from
-1500 volts to 0. The collector at 0 volts protrudes between
these two plates at the end of the electron path. A simple
resistive divider supplies all these voltages from a single
regulated supply, which is varied to vary the gain of the multi-
plier.

The multiplier has proved very successful. It is quite
stable in a variety of atmospheres, although chlorine in the
system seems to ruin the gain. Also, the insulating materials
used in its construction and the curie points of the magnet
1limit bakeout. One unit was destroyed because the pressure
became too high and a discharge occurred between the plates,
sputtering off the coating.

The collector goes directly to the scope (input resistance 1
megohm) on the l-mv scale, and the equipment is adjusted so that
1072 amps out of the multiplier gives a l-cm deflection on the
scope. The gain of the multiplier (capable of over 106) is
used at approximately 104, so that if the ion-to-electron

efficiency is 10 percent an ion current of 10-12 amps gives

10713 amps of secondary electrons, which are multiplied to
10-9 amps and produce 1 mv across 106 ohms to give a l-cm

deflection on the scope.

The part of the system described thus far is sensitive to
background gases and makes a good gas analyzer.

13




To continue with the description of the total test system
used in determining lifetimes, a test specimen of tungsten in
the form of a ribbon 0,001 inch thick, 0.10 inch wide, and
0.45 inch long is mounted at 45 degrees to the direction of an
atomic beam of material whose lifetime on tungsten is to be
measured (see Figure 5). Scattered (or re-evaporated, or de-
sorbed) atoms are thus deflected so that they traverse the
pencil ionizing beam of electromns directed toward the spectro-
meter. The test setup is carefully arranged so that the ribbon
is as close to the ionizing region as is possible with perfect
shielding to ensure that none of the primary atomic beam can
reach the ionizing region. Scattered atoms enter the ionizing
can through a rectangular aperture cut in its side.

In order to ensure uniform coverage and no end effects,
the tungsten strip is sharply bent at 0.45 inch so that the
length beyond this point is shadowed from the atomic bean.
About 1/16 inch beyond the bend the ribbon is carefully spot
welded to 0.020-inch-diameter tantalum wire, Tantalum was
chosen for ease of spot-welding and because it would heat to
the same temperature as the tungsten, thus avoiding end-cooling
and temperature distribution along the tungsten length.

The original plan was to monitor the temperature of the
tungsten with a fine-wire thermocouple spot-welded to the
back of the ribbon; however, the difficulty of spot-welding
such small wires of refractory metals dissuaded us from this
scheme. The method adopted for measuring the temperature was
to use a pyrometer looking normally through clean glass (out
of the path of evaporated material) onto the rear of the
tungsten strip, which is seen at an oblique angle. The back
of the ribbon remains pure tungsten during all of the experi-
ment so that the correction for the spectral emissivity of
solid tungsten is valid. It is felt that the temperature is
accurate to within +10%.

14
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Figure 5. Schematic showing position of sclid tungsten
test strip relative to atomic beam and ionizing
region,
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The ribbon is heated with direct current, as the magnetic
field modulates the spectrometer sensitivity and heating by a-c
would produce fluctuation of the output. The electron source
for the spectrometer is also heated with direct current to prevent
60 and 120 cps modulation of the output. The heating current for
the oven can also be bothersome if the leads are not dressed

properly.

In order to prevent an electrostatic-field deflection of
the ionizing electron beam, the ribbon is set at the same potential
as the ionizing can. This arrangement also prevents the accelera-
tion of electrons into the ionizing region if the tungsten strip
is at electron emission temperature. These two electrodes are
usually set at +150 volts,

It is of interest to estimate the density of particles at
the ionizing region for any evaporation rate. Let us consider
a material that has a vapor pressure p at a temperature T.
When a surface of this material is in equilibrium with its vapor
pressure, the demnsity of atoms everywhere outside the surface is
p/kT. The density at the ionizing beam would be this same p/kT if
it were surrounded by a complete cylinder emitting atoms at this
pressure. However, the 0,10-inch width of tungsten at a radius
of about 0,225 inch results in only 0.1/2v.x 0.225, or about 1/15
of a complete cylinder. Dilution also occurs in the axial
direction because the ribbon is not infinitely long. It is
estimated that this causes a further factor of 2 dilution, There-~
fore the density in the ionizing region, and hence the probability
of ionization, is down by a factor of 30 from the equilibrium
density that would be predicted from the vapor pressure, Also,
the temperature of measurement is about 1500°K, rather than
the 300°K associated with conventional gases, so one suffers
another factor of 5. These calculations suggest that a material
evaporating off the ribbon at 1500°K with a vapor pressure of
1 x 1078 torr will populate the ionizing region to the same

16




extent as 7 x 1()"'9 torr of a noble-like gas rebounding from all
the walls at room temperature. This discussion has been in-
cluded mainly to illustrate the need for keeping the ribbon
close to the ionizing beam and to indicate the high level of
sensitivity needed even when they are as close as possible,

A sketch of the oven is shown in Figure 6, The oven was
designed to achieve sustained, stable high temperatures without
causing the overheating and outgassing of adjacent parts.,

Another design objective was to make the container massive enough
that it would not readily be destroyed by alloying. These ob-
jectives were for the most part achieved., The oven has success-
fully evaporated titanium requiring a temperature in excess of
2000°K.

Molybdenum was chosen for the sample holder because of its
machinability. For those materials that alloy rapidly at
evaporation temperature (nickel, for instance), a tungsten insert
is used. The needs for stability of temperature despite the
presence or absence of evaporants and for a massive container
distated that the container be radiatively heated, rather than
heated directly by passing current through it. To heat the
holder, about 100 amps of 60-cps current are passed through a
0.001-inch tantalum filament surrounding the holder, through the
holder itself, and through a thin stem designed to generate heat
rather than cool. Heat is thus conducted into the molybdenum
holder from both ends and is radiated from the tantalum ribbon.

A copper can in which a heat shield of 0.0005-inch tantalum
sheet is wound intercepts most of the stray radiated power and
conducts it into the massive base plate via a thin sheet of
teflon that serves as a thermal conductor. This seemingly in-
congruent usage of a normally insulating material illustrates a
principle used extensively in these experiments: that is, if a
poor thermal conductor is thin enough and has enough area, it
can provide very efficient cooling. Teflon was chosen because
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THIN TEFLON FOR ELECTRICAL
INSULATION AND THERMAL CONDUCTANCE

MOLYBDENUM INSIDE 0.001 IN. Ta
FILAMENT. EVAPORANT INSIDE.

TEFLON COPPER CLAMP AND COOLING
SHIELD. Ta HEAT SHIELDS INSIDE.
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COPPER DISC BRAZED TO
STAINLESS STEEL HUB WITH SET SCREW

Figure 6., Sketch showing oven construction, Oven is
designed to allow stable, continuous high-
temperature evaporation of a wide variety
of materials.
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of its tendency to flow and thus make good surface contact.

It also provides excellent electrical insulation. Alternative
schemes would use massive current-carrying leads to conduct the
heat away. The temperature rise with such designs could be
excessive and injurious to seals and other parts. If we cal-
culate the temperature rise across 5-mil teflon used in the

oven at 100 watts of power through 40 cmz,

_ 0.03 x 40 x AT
100 0.0127 ’

AT = 1° .

If this power had to be conducted 2 inches along a copper bar
1/8 x 1/4 inch in cross section,

100 = 4 x 1/32 x S22 X 20

*

AT = 630°C!

The shutter consists of an aperture above the oven across
which a flag of thin metal can be driven impulsively to close
or open it. The "hammer" that drives the flag to one of its
extremes is a solenoid-actuated slug. A charged capacitor is
discharged across one of two solenoids to actuate the shutter,
one solenoid opening it and the other closing it. The shutter
usually opens or closes completely in less than 5 ms. For
comparison, the minimum lifetime measured was about 30 ms.

The method of data-taking has been to let an electrical
pickup from the solenoid voltage trigger the sweep of the scope
on which the output is displayed. A polaroid picture is then
taken of the scope face, the lens being opened just prior to
the initiation of the shutter action (and hence the trace).
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Examples of the single-trace photos obtained are presented in
Figure 7.

An additional mode of data-taking was required to measure
low-coverage lifetimes at low temperatures. The method used
was to determine the coverage by abruptly flashing the ribbon to
a high temperature and measuring the integrated current, which
is proportional to the coverage. Synthesized curves of the form
shown in Figure 1(a) were obtained by flashing at different
accumulation times measured from opening of the shutter or pre-
vious flashing and plotting the data obtained. These measure-
ments were made at very low arrival rates -- below the instrument
sensitivity for measuring steady state -- and a constant uncertainty
when taking data in this mode is that the arrival rate of oxygen
might be sufficient to alter the surface during the long time re-
quired for equilibrium coverage to be established.

The experiment was performed on a Veeco oil-diffusion
pumped vacuum system in a bell jar sealed with a Viton gasket.
Other gaskets in the system were Viton O-rings and teflon lead-
through insulators, as illustrated in Figure 6, Dow-Corning
704 o0il was used, and the system was continuously trapped with
liquid nitrogen. To improve trapping efficiency, an additional
baffle was added to the trap.

A light bake was performed by operating a large radiative
filament inside the bell jar. The oxygen and water partial
pressure was reduced to the point that the sample tungsten
ribbon would remain unoxygenated for minutes after flashing.

Hydrocarbon vapors were objectionable unless much effort
was expended to reduce their pressure to very low values. In
this case they were objectionable not because they might form
carbides (at these low pressures, any cracked carbon could
easily diffuse into the tungsten or over long periods react with
oxygen), but because they presented a background in the spectro-
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Figure 7., Typical picture from which copper evaporative
lifetime data was taken, 1400°K, 50 ms/div.
Downward deflection is proportional to
evaporated copper from a hot tungsten ribbon
at times after opening or closing shutter.,
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meter that interfered with the small currents that were being
measured. Some materials fortunately fell between hydrocarbon
groups, but others fell among the hydrocarbon groups, with the
result that a hydrocarbon peak or the "skirt" of an adjacent
strong hydrocarbon peak would often represent more current than
we were measuring.

COMPARISON OF EVAPORATED LIFETIME OF MATERIALS FROM SELF
AND FROM CLEAN TUNGSTEN

It is instructive to convert a vapor pressure into a "self"”

2/3

lifetime, v = c/Pev, where o = n s n being the volume density

of atoms in the solid and equal to p/m. For copper

n = (8.9/63 x 1.67 x 10~2%) =83 x 1021 . 1n2/3 - 1.9 x 103%/cn? .
-6 . o T = P .
For 10 torr at approximately 1150 7K,
R;vakT
1078 x 10°
Pev - 766_24 ——16 g 1.3 X 1014/
V6.28 x 63 x 1.67 x 10 x 1.38 x 10 x 1150 on? sec

14

Therefore the self lifetime is 1.9 x 1015/1.3 x 10 , or

approximately 14 seconds.,

We say, then that the lifetime of copper from copper is
14 seconds when its vapor pressure is 10-6 torr (at 1150° K,
from Honig RCA3). This value compares with its lifetime of
30 seconds from clean tungsten at the same temperature.

These parameters are tabulated in Table I for various
materials tested in this program,
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TABLE I

2/3 .
Material Pensit M z:?/cmz fo-gor iiz.;ng* 2zgi§ T?ég:?)
(gr/cm™)| amu t_§§ sec.)

Air ‘ 29 1013 300 |3.77x10%% 2,65

Tungsten | 19.3 | 184 1.6x101% | 2670 |sx10'3 32

Copper 8.9 63.6 | 1.9x10'° | 1150 |1.3x10'% | 15 | 30

Chromium 7.2 52 1.9x10% | 1255 |1.38x101%| 14 | 2000

Beryllium| 1.85 9 2.48x101%| 1100 |3.53x10'% 7 | 3000

Nickel 8.9 58.7 | 2x10!° 1340 |1.25x10'%| 16 | 50

Iron 7.8 55.8 | 1.9x101% | 1205 |1.31x10'%| 14.5| 200 |

Titanium 4.5 47.9 | 1.47x10%3| 1500 |1.31x10%%| 11 | 2x10%+|

zirconium| 6.44| 91.2 | 1.21x10'%| 2000 |8.2x101% | 15 |==105+4|
*Vapor pressure from Honig RCA3. %
**Estimated

Air and tungsten are included on the list only for comparison.
Particular attention should be paid to the difference between the
last two columns, first of which gives the lifetime of a material
from itself and is the value approached at high coverages on
tungsten, while the last gives our data for low coverages on tung-
sten, A wide difference indicates a strong dependence of both

lifetime and work function on coverage. Titanium and zirconium
are extremes in this respect. Copper is the most attractive
material on the list because of the low temperature at which its
vapor pressure is 10"6 torr and the similar lifetimes of copper
from copper and copper from tungsten, with the associated small
work function effect.

DATA
Copper

Copper was the easiest material to test. It vaporized easily
from the oven and had negligible dependence on coverage, so that
the waveforms were almost perfectly exponential. Its lifetime
versus reciprocal temperature is shown in Figure 8, As shown
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in Table I this lifetime is only twice the lifetime of copper
from itself, a fact that indicates that even a high coverage
of copper on a surface would not alter the work function

(8 = 4.5).

The use of copper in ion engines for many years indicates
its compatibility. A confirmatory experiment in which copper
was placed in the ion beam immediately above the accelerator
showed that the neutral fraction and critical temperature were
the same before and after exposure.

Chromium

The adsorption of chromium on tungsten is much more complica-
ted than that of copper. The lifetime of chromium is dependent
on coverage, and in addition, chromium diffuses into tungsten.
Oxygen on the surface decreases the lifetime, but the effect is
small,

A distinguishing feature of chromium is that its lifetime
(shown in Figure 9) changes abruptly at one coverage, which is
called a monolayer (¢ = 1). We do not have an accurate knowledge
of what density this coverage represents; we say it is about
1.5 x 1015 atoms per square centimeter. The maximum coverage
before bulk chromium is formed is 1.3 monolayers. The 0.8 and 1,1
monolayer lines are sketched in the figure to indicate the more
rapid variation of lifetime for coverages greater than a mono-

layer.

Of the materials tested, only chromium demonstrated un-
mistakable and measurable diffusion. We cannot distinguish
between bulk and grain boundary diffusion, which are both
into the bulk of the material. The evidence of this diffusion
is shown in Figure 10, It can be seen in Figures 10(a) and 10(b)
that the amount of chromium that comes out of and off the tung-
sten when its temperature is flashed increases with the time
of exposure., The structure is due to the temperature increase

(]
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Figure 10,

(a) Exposure 10 sec.
flash after 0.2 sec.

(b) Exposure 20 sec.
flash after 0.4 sec.

(c) Exposure 10 sec.
flash after 10 sec.

(d) TFxposure 10 sec.
flash after 20 sec.

Scope traces of chromium evolution from the
interior of tungsten upon flashing for various
exposure times and periods of delay between
oven shutter closure and flashing. Downward
deflection represents evolution; horizontal
portion of trace represents approximatelx zero
evolution. Temperature of tungsten 1615 K.
Horizontal scale: 100 ms/div.
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during the flash and shows differing degrees of ease of re-
emission. In Figure 11 these flashed currents integrated by

a capacitor across the input of the scope are shown for different
accumulation times, all of which are beyond the time required

for equilibruim adsorption coverage. In Figure 12 we can see
that the plot of accumulated chromium against the square root

of the time is linear, which is indicative of a diffusion process.

When chromium is applied to an operating porous tungsten
ionizer, the results are very apparent; under most conditions the
critical temperature is higher, and the neutral fraction is low,
possibly because of the tight oxygen-to-chromium bond. It is
nearly impossible to rid the porous tungsten of the last rem-
nants of chromium, which continue to cause these effects. 1In a
pressure of oxygen the critical temperature changes -- the higher
the oxygen pressure, the lower the critical temperature; if the
oxygen is stopped, the critical temperature is at first extremely
high, These effects are detailed in Monthly Report No. 8, which
is included as Appendix I,

Beryllium

The lifetime of beryllium on tungsten presents a complica-
ted picture. Not only is the lifetime strongly dependent on
coverage, but it varies widely with the presence of oxygen. . 1In
addition, the sticking probability is not unity and varies with
the degree of coverage and oxygenation, The story of beryllium
lifetime is told in Figure 13, In this figure, the data for
® = 0 is the most reliable, the higher coverage data having
been obtained from analysis, as discussed previously and illus-
trated in Figure 1(d). The value 6 = 1 was taken as the maxi-
mum integral before bulk condensation began. The information
on beryllium on oxygenated tungsten is only approximate because
of the difficulty of measuring arising from the nonunity sticking
coefficient, The lower dotted line is an estimate of this life~
time, which is about 104 times longer than the lifetime from
clean tungsten.
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Figure 11.

Picture showing diffused chromium flashed off after
varying times of exposure. This picture differs
from Figure 10 in that a capacitor smoothes the
curves to allow easier geometrical integration.
Accumulation times are 5, 10 15, 20, 25, 30, 60,
90, and 120 seconds at 1515 K.
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BERYLLIUM EVAPORATIVE LIFETIME, SECONDS
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Figure 13. Evaporative lifetime of beryllium versus
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Sticking probabilities differing from unity -- sometimes
approaching zero -- were observed at various times during data-
taking, in contrast to the fact that no other material studied
showed a detectable departure from unity. These observations
for beryllium are sketched in Figure 14, where the curves shown
are qualitative only, not quantitative. No detectable bulk
diffusion could be observed,

When beryllium is sputtered onto an ion-emitting pellet,
the results are similar to those with chromium -~ the material
is impossible to get rid of, and although small amounts are un-
detectable by themselves, when traces of oxygen are present
the critical temperature is high. Continuous oxygen pressure
lowers the critical temperature, as illustrated in Figure 15.

We have found this oxygen effect to be similar with chromium,
beryllium, and tantalum and attribute it to the known affinity
of these elements for oxygen. The conclusion is somewhat suspect,
however, since some of our later pellet tests show this effect
to some degree even when these materials purportedly are not
present., We suspect that in these cases the use of tantalum
as a heat shield while sintering, vacuum distilling, or brazing
has contaminated the pellet.

Nickel

The lifetime of nickel on tungsten is relatively simple,
with only a small dependence on coverage, Strangely, the life-
time of nickel on oxygenated tungsten is shorter than on pure
tungsten and increases with coverage, as shown in Figure 16.

Also remarkable, in the light of the known enhancement of
sintering by nickel, was the complete lack of any evidence of
diffusion of the nickel into the tungsten. These results tend
to suggest there is no solubility of nickel in solid tungsten,
and that the small limit of solubility that has been reported4
might be adsorbed material in crystal bbundaries. Such a
conclusion makes the observed enhanced sintering of tungsten by
nickel very confusing,
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1. O CLEAN
2. @ SPUTTERING BERYLLIUM ON FOR TWO MINUTES
3. & AFTER STABILIZING AT 1600 °K FOR 10 MINUTES
4. O 30 MINUTES LATER AND HEATED UP TO 1850 °K
. 5. D AFTER SPUTTER CLEANING AT LOW TEMP (1530 °K)
6. O WITH 5X 1070 TORR OXYGEN
7. 3 OXYGEN OFF
8. /A AFTER SPUTTER CLEANING FOR 10 MINUTES
9. @ WITH 5X 10”5 TORR OXYGEN
10. @ SPUTTERING BERYLLIUM ON WITH OXYGEN, BUT DATA WAS TAKEN WITH O, OFF
11. © WITH 5X 107 TORR OXYGEN
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Figure 15, Cesium neutral fraction versus temperature of
porous tungsten on which beryllium is deposited.
Testing sequence reveals interesting interaction
with oxygen.
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It is suspected that if the coverage of nickel is kept
below a monolayer, no sintering will be detected. This supposition
is somewhat supported by an experiment in which we heated a care-
fully measured tungsten pellet above a chamber in which nickel
was placed. No sintering (< 0,3 percent) was observed after 30
minutes of heating with a continuous bombardment of more than a
monolayer per second; also, the surface remained open. (Later,
when molten nickel-moly alloy ran into the porous tungsten,
sintering was measurable.)

In further tests, when nickel was sputtered onto an operating
ion emitter at a rate of about 1/2 monolayer per second for periods
as long as 2 hours with the temperature (1400°K) selected to
produce more than a monolayer, no effect on neutrals, critical
temperature, or transmittivity was detected. On the basis of
these evidences, we see no objection to the use of nickel in the
accelerator,

Iron

Lifetime data for iron are presented in Figure 17. Iron
resembled nickel in all qualitative aspects, having no effect on
an ion-emitting pellet. These findings suggest the use of iron
accelerator structures despite the long-standing worry about
sintering. The fact that E.0.S. at one time used 2-atomic-per-
cent iron in their infiltrant supports the evidence that sintering
does not occur with small amounts of iron -- especially if in-
cident only from the surface.

Titanium

Titanium has a very long lifetime, especially at low
coverages, and its measurement was very difficult, Approximate
lifetimes are presented in Figure 18, Whereas the lifetime
data obtained for most other materials (iron, chromium, nickel,
and beryllium) are considered to be within about 20 percent for
low coverages, the data for titanium might well be off by half
a decade.
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When titanium was sputtered onto an operating ion emitter,
it was found to be a bad poison. High titanium coverages in-
creased the neutrals to over 50 percent, and high-temperature
operation diluted the titanium, probably allowing it to surface-
migrate into the interior of the porous tungsten. Cleaning by
sputtering would temporarily reduce the surface concentration of
neutrals, but then more would diffuse to the surface. For example,
after about 100 monolayers were placed on the surface, heating
for about 20 minutes at 1600°K would reduce the neutrals to about
5 percent, sputtering would further reduce this to 1/2 percent,
but upon further operation, the neutrals would again increase to
a few percent,

Small amounts of titanium increase the neutrals but the
critical temperature is slightly reduced. Interactions with
oxygen were not studied. This was an oversight, and in light
of the interesting oxygen effect that was observed on a
zirconium poisoned surface, the investigation might have
proved of interest,

Zirconium

Zirconium sputtered onto an operating ion emitter poisons
it severely, reducing the ion current to about 25 percent and
increasing the neutrals to 75 percent. After an hour of heating
at 1600°K neutrals still measure over 50 percent and sputtering
cleaning only temporarily helps. Remnant oxygen increases the
work function and lowers the neutrals to a fraction of a percent;
then when carbon removés the oxygen, the poisoning effects of
zirconium are once more observed.
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Difficulties were encountered in an experiment to measure

the lifetime of zirconium on tungsten because of the nearly

infinite lifetime of the material at low coverages and tempera-

tures below 2000°K.

Evidence of surface-migration, interaction

with oxygen, and severe thermal emissivity change seems to

indicate a characteristic of zirconium beyond its poisoning

effect.

Summary of Lifetimes Expressed as Heats of Evaporation

Table II lists To
coverages is expressed at 7 = To

TABLE I1I

Lifetimes on Clean Tungsten

and Eev in volts when the lifetime at low
exp (Eev e/kT;s (Eq. 3).

Material T, (sec) E_, (volts) c at 1500°K
(sec)
Copper 4,7 x 10714 3.365 0.01
Chromium 5 x 10712 4.4 4
Beryllium 2 x 10713 3.965 0.04
Nickel 5.6 x 10" ° 4.22 1
Iron 1.4 x 10717 4,95 0.7
Titanium T ~ 50 sec. at 2000°K T 10°
Zirconium wee T este> 10% sec. at 2000°K ~
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PROGRAM TO TEST POROUS TUNGSTEN PELLETS

INTRODUCTION

Space Technology Laboratories was asked to test a maximum
of 24 porous tungsten pellets that would be supplied throughout
the year by Lewis Laboratories. These pellets were to have
their cesium neutral fractions measured as a function of current
density up to 25 ma/cmz, and as a function of temperature at 1,
10, and 20 ma/cmz. These measurements were to be made both from
clean tungsten in a high vacuum and from oxygenated tungsten in
5 x 1()-6 torr of oxygen. We had previously demonstrated that by
using a hydrocarbon-~free high vacuum and cleaning by sputtering,
the clean surface condition could be achieved.

The results of testing a sample of porous tungsten may vary
with the testing procedure and the equipment used, If the vacuum
is poor the surface will be either oxygenated, resulting in
continual tungsten removal, or carbided, causing the continual
addition of carbon. If foreign materials are allowed to reach
the sample surface, the test might be conducted on a completely
altered surface. If high temperature and sputtering are not used,
the results are likely not to represent tests on clean tungsten.,
If scattering apertures are in front of the emitter, the measured
neutrals might not represent the actual neutral fraction emitted
from the surface., In addition to the procedures and equipment
used in testing, certainly the method used to prepare the surface
of the sample is extremely important to test results, as any
etching will open the surface pores and alter their geometry,
and some types of etch will expose high-work-function crystal
faces. The experimental apparatus and the procedures used in
testing the sample pellets are described fully in the following

pagese.
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DESCRIPTION OF APPARATUS

Vacuum

The experiment to test porous tungsten pellets was conducted
in a pyrex bell jar sealed with a Viton A "L" gasket to a stain-
less steel baseplate that was mounted with bakable metal gaskets
to a Welch Turbomolecular Pump, This pump has no diffusion pump
oil or "head gate"; it consists of cascaded turbine blades
rotating at 16,000 rpm, through which heavy organic molecules
have no chance of diffusing. An o0il backing pump is used, and
the bearings are oil-lubricated. To break the vacuum systen,
air is let in and then the turbine is stopped. O0il vapors are
barred from getting into the experimental region by the long path
of air through which they must diffuse. This pump has a pumping
speed of 140 liters/sec and an advertised ultimate vacuum of
better than 1 x 10~ 1° torr, It has worked very satisfactorily,
and a mass spectrometer has shown it to be free of hydrocarbon
vapors (except when the turbine pump has failed and the fore-
pressure invaded the ball jar).

A large area of copper at liquid nitrogen temperature
surrounds the experiment and eliminates water vapor, which is
the dominant gas load of the system, and comes from the bell
jar and from cesium compounds that are difficult to remove
from previous operation.

Pellet Size

The pellet configuration chosen for all our testing is a
flat cylinder 0.156' (5/32 inch) in diameter and 0.020 inch
thick. This size was originally chosen so that the pellets
would fit on the end of 3/16 inch molybdenum tubing that we
had been using in our feed system and had on hand., This size
proved just about small enough to achieve the desired current
densities with non gridded, single-aperture guns without using
voltages that are excessively difficult to work with because
of breakdown and X-rays and yet not so small that braze pene-
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tration and geometrical variations due to thermal expansion
would present a problem, The small size does not restrict
availability or necessitate excessive machining, We call the
effective area of this pellet 0.10 cm®, partly to facilitate
our conversion to current density and partly because 0.10 cm?
is equal to the effective area of 0.141 inch of diameter, just

15 mils less than the actual diameter, which compensates

for a small braze penetration and the shoulder on which the pellet
sits.

"O"-Field Accelerator

An accelerator to the side and slightly behind the pellet
mount has been used in this testing program. This arrangement
has quite a few attractive features: no cesium is incident on
the accelerator; no material from the accelerator can strike the
porous tungsten pellet under test; no scattering structure exists
to alter the interpretation of measured neutral fraction; and a
hot ionizing surface can be placed above and close to the emitter
to clean it by sputtering with cesium ions.

A computer program was run to prove out the intuitive design
and to determine the trajectories and perveance. The computer
results are shown in Figure 19 for a fully space~charge-limited
beam. Note first that the emitter surface is surrounded by a
lip to focus the ions inward against space-charge repulsive
forces and to make the electric field and current density uniform
across the emitter surface. The uniformity of current density
can be judged by the constant distance from the emitter of the
+3000 volt equipotential (~-300 volts with respect to the emitter).
Braze material occupies the region of field reduction near the
edges, The example shown here has +3300 volts on the emitter
and -6700 volts on the accelerator for a total acceleration
voltage of 10 kv but exits the ions through a 1/2 inch aperture
1/4 inch above the emitter at zero volts (off the figure but
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part of the computer problem). The computer predicted a current
density of about 17 ma/cmz. This figure can be confirmed by
applying the planar space-charge law to the observed 300 volt
equipotential at about 0,038 cm:

_ 4.6 x 10”9(300)3/2
(0.038)

J = 16.5 ma/cm?

In practice we operate the accelerator plate closer to top
of the rim and so realize a higher perveance. Also, we use an
accel-decel ratio nearer 2:1 that is, +5000 and -5000 volts --
and get less divergence and slightly higher perveance,

Feedtube and Plenum

Original plans were to braze the pellets into a holder that
could be replaced simply, without brazing, by setting it on a
fixed heater and feed system, Leakage was to be handled by
properly designed differential pumping. The design was troubled
by excessive leakage and had no chance of success when cesium
pressures high enough to 1lift off the emitter holder were
considered. The design settled upon utilizes a small molybdenum

plenum assembly, used so that heat shielding would be unnecessary,

joined to a 1/16 inch diameter molybdenum tube, (Designed to
minimize heat loss, generate some heat, and, originally, fit a
Swaglok-type fitting).

Braze

In a one-step operation, the emitter is rhodium-brazed into
the plenum chamber and the plenum chamber is brazed onto the
tube. Pure rhodium powder is mixed with turpentine to form a
paste, which is placed in a groove around the emitter and at the
joint between the plenum chamber and the tube. A minimum of the
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paste is used in the latter joint because it gets hotter during
the braze and the moly-rhodium alloying might seriously weaken
the thin tube. The brazing is carried out by carefully observing
the braze material while electron-bombarding it with about 50 ma
of 2000-volt electrons from slightly below the plane of the
emitter, At the first sign of rhodium melting (2240°K), the
temperature is dropped. The braze is usually successful (see
Figure 20, which is a photomicrograph of the cross section of a
braze).

At times we get a trace of braze material on the top,

- although the burnishing from machining helps prevent this.
Vburing one test (No. 10) a loose~fitting pellet whose surface
was eroded and porous had its lower side almost completely sealed.
The probability of success is improved by having a close fit,
burnishing the sides of the pellet, and keeping the porous tung-
sten colder (by radiation) than the molybdenum prior to the
instant of braze. It is felt that the rhodium powder sinters
together and withdraws'from the porous tungsten, making creepage
on top less likely. Penetration of the braze material into the
porous tungsten is very slight.

Heater and Thermocouples

After brazing the permeability is checked and the surface
is etched. (Both of these processes are described in later
sections.) The next assembly process is to install the filament
and thermocouple, This operation is performed with a spotwelder.
A 0,00l-inch-wall tantalum tube (with a spotwelded seam) ,
0.200-inch OD and about 1/2-inch long is spotwelded to the out-~
side of the plenum tube below the rim. The other end is then
spotwelded to a nickel bushing, which is kept from touching
the feed tube by a ceramic tube. Next, 0.003-inch thermocouple
wires (6 and 26 percent rhenium-tungsten) are sandwiched between
a small bend in a 0,001-inch niobium tab and spotwelded to the
side of the plenum chamber so that they protrude under the
accelerator electrode.
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Mounting, Filament Current Leads, and Differential Pumping

Figure 21 is a schematic sketch of the assembly of the experi-
ment and can be referred to during the following discussion,
The 2-inch long, 1/16-inch diameter molybdenum feed tube slides
for about 1 inch into the thick-wall molybdenum tube and is
secured with a set screw, Leakage is handled by cascade differen-
tial pumping of the cesium to an area where it is completely
trapped. Also, as a further insurance against leakage, a small
drop of aqueous solution of CSCI is placed in the tight-fitting
joint. The nickel bushing to which the filament is spotwelded
is held by stainless steel screws in a stainless steel clamp
which is kept cool to minimize diffusion welding and galling of
the screws by the copper strips leading from it. (Many laminated
strips are used for flexibility.) The copper strips are joined
to a block that is cooled across thin teflon to the water-cooled
base. The current-carrying capacity of the heremetic seal is
increased by having heat generated in itself, and heat conducted
down the filament lead, go into the base and not develop a huge
temperature drop across the seal.

Cesium Oven and Seal to the Basgplate

The heavy molybdenum rod into which the 1/16-inch OD molyb-
denum feedtube is set-screwed was chosen for its high thermal
conductivity and low thermal expansion., This tube is brazed to
a stainless steel fitting that seals onto a flared 1/2-inch OD
copper tubing about 4-inches long that forms the oven. The OFHC
copper tube is sealed at its bottom end by pinching and melting
the copper and is wrapped with nichrome wire coated with glass
thread, which forms the heater for the oven., A glass- . ..
ampoule of cesium is placed in the oven, and the flare seal is
then tightened with two large wrenches. After the chamber is
evacuated, the glass ampoule is broken by squeezing the copper,
a thermometer is attached, and the whole oven is wrapped with
glass wool for thermal insulation. S
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This oven and seal assembly has successfully withstood
temperatures over 400° C at which level sufficient cesium
pressure to achieve 25 ma./cm2 ion current density is usually
obtained unless pellet permeability is very low.,

The whole emitter assembly is sealed with teflon between
two stainless steel knife-edges and projects through the bottom
of the baseplate., The teflon makes a good vacuum seal and
provides adequate voltage insulation. On a copper jacket
surrounding the emitter and filament are mounted the insulators
that support the accelerator. The copper, which is attached
to the water cooled base, shields and cools the insulators, and
their mounts and evaporation shields. These insulators are
standard 1/2-inch steatite standoff insulators with 6-32 threads
but with grooves machined on their outside surfaces to inhibit
sliding sparks.

Accelerator

The original plan was to use an accelerator that could be
heated to remove surface products that cause electron drain
currents, It was found, however, that a simpler nonheated
accelerator worked reasonably well. As a result we used the
following design. Into a molybdenum strip about 0,040 inch
thick and l-inch wide is drilled a 0.250-inch diameter hole,
the edges of which are rounded and electropolished. This stiff
strip has sharply bent ends that clip onto leaf springs that
were originally designed to support a ribbon that could be
heated by passing current through it.

Some drain problems have been encountered after sputtering
because cesium is deflected onto the accelerator and the low-
work-function cesium compounds field-emit electromns.
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The ions are exited through an aperture in a liquid-nitrogen-~
cooled copper plate toward a collector biased with +10 to +20
volts to recollect secondary electrons. No attempt is made to
neutralize the beam, and it is suspected that there are trapped
electrons in the ion beam,

The base of the emitter assembly (which carries voltages
up to 10,000 volts) is cooled by the same water used for cooling
the bearings of the turbomolecular pump but is electrically
isolated by two glass drip columns,

Neutral Detector

Neutral cesium is detected at an angle of 30 degrees off
the axis by a liquid-nitrogen-cooled, shuttered sensor. A hot
tantalum ribbon is used to surface-ionize incoming neutral
cesium and emit the resulting positive ions to surrounding
negative electrodes. Positive ion current from the filament is
monitored by a Hewlett Packard 425A Micro-Micro Ammeter,

The neutral detector is calibrated by correlating ion
decreases with neutral increases, To determine the neutral
fraction emitted off the surface by this method of detection
and calibration, the assumption has to be made that the angular
distribution is the same (presumably a cosine distribution) for
both low and high neutral evaporation. This assumption might
well be in error if the ions come from deep within the pores,
The neutrals from these deep sites could only get to the neutral
detector by scattering off outer rims of the pores that are free
of cesium and they therefore would have a high probability of
being converted into ions. Neidtrals that can escape without
this conversion to ions are emitted in a normal direction,
hence it is very possible that the density of neutrals at normal
incidence is significantly higher than at 30 degrees; however,
the integral of this normal peak is still a small part of the
whole neutral emission.
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In defense of our measurements, it must be said that the
correlation of ion change with neutral change is very good all
the way from 5 to 100 percent neutral fraction. Also varying
the electric field over a wide range which would be expected
to change the distribution as the field reaches different dis-
tances into the pores, causes no change in the measured neutrals,

Photographs of the experiment to test porous tungsten pellets
can be seen in Figures 22, 23, and 24.

In Figure 22 the copper container for liquid nitrogen,
which is attached to both the lower plane containing the aper-
ture and sensor and the upper insulated collector, is prominent.
The shield, behind which is the nude ionization gage, is seen
behind the lower plane. The ribbon that can be swung over the
ionizer for sputtering cleansing can also be clearly seen. In
Figures 23 and 24, the location of the emitter and accelerator
can be seen in relationship to the baseplate, copper mounting
shield, and the grounded aperture plane through which the ions
pass.

Surface Sintering and Etching

During the course of the testing poor test results were
obtained on several occasions because surface sintering closed
the majority of the pores, Good results were obtained after
such surfaces were taken out of the system and chemically etched.,
Dramatic examples of this effect are the two tests made of E.O.S.
E4 material and of material overheated to try to rid it of
chromium, This latter case is chronicled in the monthly report
included as Appendix I.

When it was confirmed that better results were obtained
with etched surfaces we routinely etched the surface of all the
later emitters before test. The benefits resulting from this
process are many:

52



Figure 22. Photograph of experiment to test porous tungsten
pellets. Large structure to left is liquid
nitrogen container.

53




J010030p TBJIINOU UO J8313NYQ

*doj uo jusutwmoad sy
‘aueTd aemol Japun juswixedxe JO MOTA

‘ez 9anBdy1yx

54



*udos ‘aq ued saatm aTdnooouadyy,
*X038BIDT2008 PIOTI-.U. Fo ydeadojzouyd dn 8so1d

*pg 2andy g

35



(1) Surface sintering due to cold-working of the surface
during machining is removed. (Burnishing of the
surface during brazing is desired to retard creepage
of braze material,)

(2) High-work-function facets of the tungsten crystals
comprising each grain are probably exposed.

(3) Contaminants from the vacuum deposited on the surface'
during brazing and other handling are removed.

Anodic electroetching in sodium hydroxide has been used on the
front surface. It is hoped that the electroetch does not make
big holes preferentially bigger, as a more passive etch might.
Such an etch is used on the rear by filling the plenum chamber
with a mixture of sodium hydroxide and purex and immersing it

in boiling distilled water for 2 minutes. The porous tungsten
is then force-flushed with distilled water until the flush water
no longer shows any basic reaction.

Permeability Measurements

The transmittivity of the pellet brazed into its plenum
chamber and feedtube is measured before and after testing. This
measurement is made by pumping 30 cc of air through the pellet
to vacuum and measuring the time required for it to fall from
11 to 9 cm of octoil pressure. This low pressure is to assure
Knudsen flow. The time constant of the plug is five times the
measured time, t , and the time for 1 cn? (instead of 0.1 cm2)
would be one half the measured time. Since the leak rate of
a hole of 1 cm2 to vacuum is 11,600 cc/sec, the transmittivity
is[30/(1/2 t ] /11,600.

To give a value that is meaningful for the material and
independent of the particular thickness we use (approximately
1/20 cm), we state a transmittivity thickness product which is
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[1/20 x 30/(1/2 )] /11,600, or 2.6 x 107%/t_ cm. The measured
time is often around 50 seconds, giving a transmittivity thick-
ness product of about 5 x 10% cnm. Although it is felt that
this dimensionless quality, which is applicable for any mole-
cular weight and any temperature, is more meaningful than per-
meability, we will also give the conversion factor:
K[?rams/cmz/sec/(torr/cm)]1= m (106/760)(2-ka5"1/2 x (trans-
mittivity thickness product); this factor is 1/8 x 10-2, so
our average 50-second material has a permeability to air flow

1 1

in the Knudsen regime of about 10~7 grams—cm-l-sec- -torr .

Precautions Against Contaminants

The use of copper for the collector assures us that no
contaminants are sputtered onto the pellet surface, and the
use of the "Q"-field geometry assures us that no foreign
materials, such as tantalum oxide or molybdenum oxide, are
evaporated onto the surface during oxygen exposure. The
feed system has proven not to be a source of contaminants,
Other possible sources of contamination are molybdenum used
in the hot portions of the system and the stainless steel
and glass ampoule used in the cooler portions.

Method of Takigg Data

When a pellet first produces ions the test outputs fluctuate
rapidly. Usually about an hour's operation at 5 ma/cm2 at about
1700°K will stabilize the surface to a slightly oxygenated
condition with low neutrals and high critical temperature. If
the pellet is not oxygenated at this time, it is exposed to
5 x 10-6 torr of oxygen to remove carbon by conversion to carbon
monoxide. However, enough oxygen is left from etching so usually
this step is unnecessary.
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Sputtering is initiated at high temperature (1850°K) until
a stable condition is obtained and continues aftef sputtering is
stopped through temperature cycles between 1850°K and critical
temperature, This surface is the reproducible "clean" surface
representative of the sample, The neutrals are higher and the
critical temperatures lower than they were before sputtering.,

After cleaning, data are taken at current densities from
1 ma/cm2 to 25 ma/cm? at 1600°K, with pauses at 5 ma/cmz, 10
ma/cm?, and 20 ma/cm? to sputter and take neutral fraction
versus temperature curves, Oxygen at 5 x 10-6 torr is then
admitted and the current density is decreased, with pauses at
20 ma/cmz, 10 ma/cm?, and 5 ma./cm2 to take neutral fraction
versus temperature curves. All too often the degree of oxy-
genation depends on the length of oxygen exposure and the past
temperature history of the sample, as carbon impurity in
diffusing from the bulk can rid the surface of oxygen as fast
as it arrives.

Results

The indexed data sheets for all the pellets tested are
contained in Appendix II. If explanation of any points alluded
to on these sheets is desired, further detail can be found in
the monthly reports originally containing these sheets which
are referenced at the beginning of the Appendix, Test sheets
on each pellet tested are found in Appendix III. The conclusions
that appear on the bottom of each of these sheets are included
in this section as a summary, which follows the following general
remarks,

A very marked advance in the quality of porous tungsten
pellets for high ion current density has been made. The higher
uniform pore-count that results from the use of fine-graded
spherical powder does indeed product superior high-current-
density operation. The more pores per area, the higher is
the ion-current density showing the neutral fraction and
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critical temperature of solid tungsten., The best material
tested shows almost no variation (at well above the critical
temperature) of neutrals from 1 to 5 ma/cmz. The mark of a
superior material is how little it deviates from solid
tungsten at current densities above this level,

Some materials have an inherently poor pore count or suffer
surface-sintering, Others simply are not tungsten. The tantalum-
containing pellets generally have the characteristics of partial
oxygenation and have higher critical temperatures,

Most of the data sheets include neutral fraction versus
temperature curves at 5 ma/cmz. It was found that this was an
informative curve because it often was in the transition region
where the characteristics were first deviating from that of
solid tungsten. Also, it is a convenient current density with
which to run comparative curves and do extended sputtering,
since it is high enough that backgrouhd impregnation effects
are not significant and yet not so high that severe high-voltage
and drain-current problems are encountered. Generally the low-
current-density data with oxygen present is emitted because the
neutrals were below our limit of detection,

Some materials have a poor surface pore count because of
the size distribution of the tungsten powder used in their
manufacture. However, even the best material can show poor
results due to surface closure. Surface preparation is extremely
important in avoiding this difficulty. Also, it is important
to understand the reasons for surface sintering. It seems pro-
bable that cold work from previous machining can leave the
surface so disarranged that rapid surface sintering occurs, and it
also seems evident that oxygen from the vacuum system can keep
the surface open, but at the expense of volatizing WO3. The
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role of wo3 as it diffuses from the interior to the surface
is not known. Certainly if carbon from the vacuum system
concentrates near the surface, the tungsten is deposited at
the surface and CO is evolved. More work is needed on the
subject of surface sintering.

Test No. 20 was made on high pore-count material that was
carbided by cracking CZHZ and operating to high current densities.
The material used was Hughes G2A. The results, which are pre-
sented in the data sheets in Appendix II, showed lower neutrals
and critical temperatures for the carbided surface at all current
densities. Special attention was directed to continuous operation
in hydrocarbon vapor. If oxygen or water vapor exceeded the
hydrocarbon vapor no effect was noticed (eventually the tungsten
would be decarbonized), and CH4 seemed Eg have no effect. Now-
ever, a vapor pressure as low as 1 x 10 torr (nitrogen
equivalent) of C2H2~would raise the neutrals and critical
temperature when the pellet was operated at a low temperature
(e.g., close to critical temperature at low current densities).
The higher the temperature, the greater was the tolerance for
high vapor pressures. The desired carbide surface could be
maintained in a C2H2 pressure of 3 x 10-6 torr at 1450°K
but would deteriorate at 1410°K, presumably because pure
carbon formed on the surface faster than it could surface-
migrate away or diffuse through the carbide to the base
tungsten. Operation at 1450°K would restore the desired
condition. At this temperature 4 x 10-6 torr was required to
alter the surface adversely. Again raising the temperature
and lowering the pressure would cause the good surface to
reappear.,
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When this surface was examined with X-rays, WC was identified.
We had earlier been ascribing this good ion-emission characteris-
tic to W2C, but neither W,C or tungsten could be detected! If
the cracking probability is markedly below one, the outer layers
of the porous tungsten are permeated with hydrocarbon gas and
the surface grains are carbided from the sides and back also.
Cracking of carbon beyond the times when these grains are com-
pletely converted to WC would undoubtedly produce a poor ionizing

surface.

Summary of Test Results

Test N°| l — EQOQS. E6

Neutral fraction low 1-5 ma/cm2 - increases rapidly above.
Critical temperature high-increases rapidly above 10 ma/cmz.
Would probably been better results if sputtering and etching
were used,

Test No. 2 - E.0.S. E-7A

Neutral fraction high and increasing with current density.
Critical temperature high, Would probably have benefited from
sputtering and etching, Surface crack terminated test.

TeSt NO. 3 haad E.O.So E3

Brazed by E.O.S. Neutrals high. Probable contaminant or
surface closure.

Test No. 4 - E,0.S. E4

Poor results due to surface sintering,

Test No. 5 - Phillip Mod E

Valid test on clean tungsten (by sputtering) but high
neutrals because of poor pore count,

Test NO. 6 - E.o.s. E3

Repeat test with etching and sputtering. Excellent results,
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TeSt NO. 7 - EQOOS. E4

Superior high-current-density performance (about 1/2 percent
neutrals at 1450°K for 20 ma/cmz).

Test No. 8 -~ Astromet 10-1

Performance improved after re-etching. However, results
are very poor because of low, nonuniform pore count.

Test No. 9 - E,0.S. "1-10p" (G1)

Shows steady increase of neutrals with current density.
Good critical temperature. (2 percent neutrals at 1430°k for
20 ma/cm?.)

Test No. 10 - Astromet 12-1

Low permeability because of braze penetration on reverse
side. Test poor, but possibly invalid.

Test No. 11 - E.0.S. "1-10p" (G1)

After elox machining, Critical temperatures at high current
density higher and more sloppy after elox.

Test No. 12 - EOOQSQ E-4 - 10 Ta

Knees more rounded at low current density. Good high
current density performance (~ 2 percent neutrals at 1420%
for 20 ma/cmz).

Test No., 13 - Hughes (G2a)

Neutrals low and indicate high pore count, Critical tempera-
ture unaccountably high.

Test No. 14 -~ E.0.S. Bar No, 5 (GS)

Neutrals and critical temperature continuously increase
with current densities., Knees sharp and solid tungsten appearing.
(About 2 percent neutrals at 1430°K for 20 ma/cmz.)
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Test No, 15 - E,0.S. 2% Ta

Critical temperature high - rounded knees., Work function
high at low current density probably because of oxygen associated
with tantalum. (2 percent neutrals at 1600°K at 20 ma/cmz.)

Test No., 16 ~ E.0.S. 5% Ta

Critical temperatures and neutrals high (7 percent neutrals
at 1600°K at 20 ma/cmz).

Test NOC 17 - E.O.S. 10% Ta

Same general characteristics of Ta series (15 =~ 17) -
rounded drooping knees - oxygenated - high critical temperatures.
(1-1/2 percent neutrals at 1600°k for 20 ma/cm%)

Test No. 18 - E.O0.S. Bar 2 (G4)

Good high current demsity performance (1 percent neutrals
at 1430°K at 20 ma/cm?).

Test No., 19 - E,0.S. Bar 2 (G4)

After elox machining, surface carbided upon initial opera-
tion., (Low criticals and low neutrals.) After oxygen and
sputtering results nearly identical with test Number 18.

Test No. 20 - Hughes G2a (Carbided-WC)

Generally lower critical temperature and neutrals (1/2 per-
cent neutrals at 1430°K at 20 ma/cmz).

Test No. 21 - Astromet 10-1 (Improved)

Excellent results below 10 ma/cm2 (3 percent neutrals at
14209k at 20 ma/cmz).

Test No, 22 - Hughes G2B

Results very good up to 5 ma/cmz. Couldn't exceed because
of very low permeability.

Test No, 23 - STL (G5B)

Results very good up to 10 ma./cm2 neutral fraction and
critical temperature low., Effect of pore density abruptly seen
at higher current densities.
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PROGRAM OF ANALYTICAL AND EXPERIMENTAL STUDY
OF POROUS METAL IONIZERS

TECHNICAL STATUS

Durihg this reporting period the effect of chromium on hot
tungéten has been extensively studied. The evaporative lifetime
of chromium on polycrystalline tungsten has been found to be very
dependent on coverage with about a two decade decrease in lifetime
from clean tungsten to bulk chromium. When chromium is deposited
on an operating cesium ion source, a situation similar to the .
results with beryllium occurs -- with traces of oxygen present
the neutrals are low, but the critical temperature is very high
while under a continuous supply of oxygen the critical tempera-
ture is greatly reduced. While trying to remove the chromium,

a very difficult job, we caused surface sintering by high tempera-
ture heating. This surface sintering which severely degraded

the high ion current density performance of the porous tungsten,
was completely removed by surface electrolytic etching. A sample
of porous tungsten designated "Block 5" manufactured by E.O.S.

and to be tested in the large STL engine was also tested during
this period.

Chromium Lifetime
In the last monthly progress report tentative data on the

Yifetime of chromium on polycrystalline tungsten were given.

It was recognized that the lifetimes presented’were not for a
constant coverage but varied from zero coverage at high tempera-
ture to about a monolayer at low temperature. This month the
lifetimes at low coverage are presented along with the lifetimes
for a monolayer coverage and from bulk chromium. These data are
shown in Fig. 1. The low coverage data were extended to lower
temperatures by increasing the spectrometer sensitivity and de-
creasing the arrival rates of chromium but still using the
observations of accumulative and depopulation times as outlined
in the last report. The data at very low temperatures and long
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lifetimes were determined at very low arrival rates by timing
the accumulated coverage as observed by flashing it off.

One monolayer was recognized by the abrupt decrease in life-~
time as the coverage progressed beyond this value. Evaporation
from bulk chromium had a fixed value for a given temperature in-
dependent of arrival rate and persisted at the same level after
the arrival rate was stopped. Data for a single monolayer and
for bulk chromium were only taken at the lower temperatures be-
cause higher arrival rates necessary to extend the data would
deplete the oven inconveniently rapidly. The dotted lines extend
the observed points to higher temperatures with the anticipated
slopes. The positions of 9 = 0.8 and 9 = 1.1 are schematically
indicated to show the greater change in lifetime per incremental
change in coverage above ¢ = 1 than below. The surface coverage
corresponding to what is here called a monolayer were computed
from Honig's (RCA Rev. 18 195-204 June 1957) vapor pressure data.
The particle current from Honig, I' = P/JFE;;EE. was compared to
our observed [' = oo/T . The monolayer coverage, o then is

15

found to equal about 1 x 10°" particles per square centimeter.

This value is about what one would expect. The site density on

the cubic face of tungsten is 1 x 1015/cm2.

Effect of Chromium on Tungsten Ion Emitting Properties

Chromium was introduced into a porous tungsten pellet both
by painting a solution of chromium trioxide onto the porous
surface and later by sputtering chromium onto the surface of a
previously tested clean tungsten pellet. The test results of
this pellet are shown in Figures 2 and 3. This material manu-
factured by E.O0.8. from graded spherical tungsten is designated
here as "Block No. 5" and was supplied by NASA Lewis for use in
a large STL engine. The results are typical of clean, high pore
count porous tungsten manufactured from graded spherical powder.
The reasonable neutral fraction of three percent at 25 ma/cm2

and its not too rapid increase with current density speaks well
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for the material. The critical temperature at 21 ma/cm2 is
1450° K which is only about 120° higher than Taylor and Lang-
muir predict for solid tungsten. Some of the pellets tested
in this ﬁrogram have had critical temperatures about 200°
higher than solid while some have been only about 70° K higher.
This material had before and after test, a knudsen gas trans-
mittivity thickness product of 3 x 10°% cm. '

The mhny curves of the remaining figures of the report
tell the story of chromium on tungsten. They show the original
high oxygenation with the very low neutrals and high critical
temperature. They show the difficulty of removing the oxygen
by prolonged heating and sputtering and how even when the neutrals
increase by a hundred, the critical temperature remains high.
They show the 150o K reduction in critical temperature by opera-
ting in oxygen. The severe degradation in high current density
ion emitting properties due to surface sintering is chronicled
with the subsequent restoration by surface sintering. Then as
excess chromium is alternately sputtered on, oxygen added and
then sputtered off, the effect of minute amounts of chromium on
critical temperature is emphasized. At about 5 ma/cmz, the
Taylor Langmuir critical temperature is 1270° K; the clean porous
tungsten critical temperature is 1300° K; the chromium impregnated
porous tungsten operated in oxygen has a critical temperature of
1330o K; the chromium impregnated porous tungsten sputtered clean
of most of the oxygen has a critical temperature of 1390° K; the
chromium impregnated porous tungsten with difficult to remove
amount of oxygen has a critical temperature of about 1490° K
while just after oxygen exposure with ample chromium, the critical
temperature may be as high as 1550° K.

In Figure 4, the story begins with Curve 1. The critical
temperature is high and neutrals very low, indicating a high
degree of oxygenation. Curve 2 and curve 3 shows this highly
oxygenated surface operating at higher current densities. Curve
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4 shows an attempt at removing the oxygen by sputtering.

Much oxygen is removed resulting in an increase of neutrals

by a factor of one hundred, but the critical temperature is
still the same -- very high. Curve 5 and 6 shows the depressed
critical temperature while operating in oxygen followed by the
raising of critical temperature immediately following exposure
to oxygen. Curve 7 shows the same oxygenated surface after over
night operation and sputtering; the neutrals are still low and
the critical temperature is still high. Prolonged high tempera-
ture was employed to hopefully remove the chromium. Instead

as shown in curve 8, poor high ion current density operation
reminescent of surface pore stoppage results. The curves in
Figure 5 show this condition worsening upon further heating,
shows the effect at different densities, and shows that oxygen
fails to affect its usual improvement.

Figure 6 shqws the results after electrolytic etching was
used to remove surface sintering. Also prolonged sputtering
was employed to clean the surface. Small traces of chromium and
oxygen seem to remain to lower the neutrals and raise the critical
temperature. Evidence that chromium remains is that operation in
oxygen lowers the critical temperature and sputtering more

chromium onto this surface does not affect the surface.

These points and the differing critical temperature of this
surface are illustrated in Figure 7. Curves 1, 2, and 3 show no
effect when chromium is sputtered onto the surface previously
cleaned by sputtering. Curve 4 shows the now familiar (with
Be and Cr) lowering of critical temperature when operating in
an oxygen pressure. Curve 5 also shows the familiar increase
in critical temperature following operation in excess oxygen.

Figure 8 shows in a set of neutral fractures versus ion
current density curves the history of this pellei. Note the
characteristic "plugged pore" surface with its high neutrals
and steep dependence on' increasing current density. A comparison
of curves 4 and 9 illustrate the complete restoration after
etching.
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Statement Complying With Reporting of New Technology Clause:

It has been noted that porous tungsten impregnated with
BeO or CrO binds cesium very tightly and therefore in a cesium
atmosphere makes a very good electron emitter. Such an improved
emitter might have application in thermionic converters, cathodes
in cesium bombardment engines, ion engine neutralizers and
elsewhere.

Project Hours for October 1964

A graph showing a comparison of actual versus planned
expenditures is attached. The names and hours worked by scientific
personnel are as follows:

A. Cho 160 hours
H. Shelton 144 hours
304 hours
Project Total Hours for October 391.0 hours
Project Hours to 10- 25 3,361.5 hours
Percentage of Total Manhours 51.3%
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APPENDIX II

DATA SHEETS
Contents
Test No. From Monthly Report No. Page

1 EOS ~ E6 1 I1 3-4

2 EOS -~ E7A 3 II 5-6

3 EOS - E3 3 II 7-8

4 EOS - E4 3 II 9-10

5 Philips Mod E 4 II 11-12

6 EOS - E3 4 II 13-14

7 EOS - E4 4 II 15-16

8 Astromet 10-1 5 II 17--18

9 EOS "1-10u" (Gl) 5 II 195-20
10 Astromet 12-1 5 I1 21-22
11 EOS "1-10u" (Gl) after elox 6 II 23-24
12 EOS - E4 10% Ta 7 II 25-26
13 Hughes G2A 7 I1 27-28
14 EOS Bar No., 5 (G3) 8 I1 29-30
15 EOS 2% Ta 9 I1 31-32
16 E0S 5% Ta 9 I1 33-34
17 EOS 10% Ta 9 II 35-3¢
18 EOS Bar 2 (G4) 10 II 37-38
19 EOS Bar 2 {(G4) elox- 10 II 39-40

carbide

19 EOS Bar 2 (G4) clean 10 II 41
20 Hughes G2A carbided 11 II 42
21 Astromet (Improved) 12 II 43-44
22 Hughes G2B —— II 45-<46
23 STL (SW10) (G5b) —— II 47-48
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NEUTRAL FRACTION, PERCENT
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CURRENT DENSITY, MA/CM2

Cesium neutral fraction versus cesium ion current
from porous tungsten manufactured by Hughes, (G2A)
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- NEUTRAL FRACTION PERCENT
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NEUTRAL FRACTION, PERCENT
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CURRENT DENSITY, MA/CM?

Cesium neutral fraction versus ion current
density from porous tungsten manufactured by
E.O0.S. from graded spherical powder and
designated "Block No, 5", (C3). Emitter temp: 1600
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Césium neutral fraction versus temperature
of porous tungsten designated "Block No. 5".
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PELLET TYPE: LB 2 Ta
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Cesium neutral fraction vefsus ion current density

from poreous tungsten containing 2 atcmic percent
tordalum.
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NEUTRAL FRACTION, PERCENT
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Cesium neutral fraction versus temperature of
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NEUTRAL FRACTION, PERCENT
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CURRENT DENSITY, MA/CM2

Cesium neutral fraction versus ion current density
from porous tungsten containing 5 atomic percent
tantalum,
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Cesium neutral fraction versus ion current density
from porous tungsten containing 10 atomic percent
tantalum,
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PELLET TYPE: G-4 (BAR NO. 2)
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Cesium neutral fraction versus ion current density
from porous tungsten before "elox" machining. (G4)
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NEUTRAL FRACTION, PERCENT
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PELLET TYPE: G-4 (AFTER ELOXED)

MADE BY: EOS
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CURRENT DENSITY, MA/CM2

Cesium neutral fraction versus ion current density

from porous tungsten after "elox" machining,.
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NEUTRAL FRACTION, PERCENT

PELLET TYPE: G-4 (AFTER ELOXED)

EMITTER TEMPERATURE, °K

Cesium neutral fractiem versus temperature of ion

emitter after "elox" machining.
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. NEUTRAL FRACTION, PERCENT

PELLET TYPE: G-4 (AFTER ELOXED)
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has been cleaned of carbon by previous exposure

to oxygen followed by sputtering.
I11--41




100

T

CARBIDED HUGHES PELLET

OPERATED IN HIGH VACUUM —

10

k]
~N
—
i
2
o
3
~N

N l()mu/c:m2
2 3.0/
wd \
g. \\\
g 10 A S
F N
N N
” ™. . i o A
- N
§ 0.3 ' N
Z \\ \\Q\\ \\

2 ma/cm

NN et | N

N

~

Ny

N
0.03 \
N

\ 4.8 ev
NN

0.003

K.O ev

2000 1600 1400
EMITTER TEMPERATURE °K

Cesium neutral fraction versus temperature of

porous tungsten manufactured by Hughes Research
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NEUTRAL FRACTION PERCENT

ION CURRENT DENSITY MA/CM2

Cesium neutral fraction versus cesium ion
current density from improved Astromet 10-1
(5-188B) porous tungsten.
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NEUTRAL FRACTION, PERCE NT
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Cesium neutral fraction versus temperature

of Hughes porous tungsten.
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NEUTRAL FRACTION, PERCENT
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Cesium neutral fraction versus cesium ion current
density from Hughes porous tungsten manufactured

from fine spherical powder.
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NEUTRAL FRACTION, PERCENT
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densitv from porous tungsten manufactured by
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I1-47



kv T 1 T T
200—| PELLET TYPE: G5b

MADE 8Y; STL
POWDER LOT: SW10

-

10}

7.0F ION CURRENT  [EMITTER
s.0F DENSITY, MA/CM2{CONDITION
N 5 10 20
3.0 |
g O & O |CLEAN

e 2 A
g K\ @ [N 5x107¢
% 1.0\ R A TOR O,
Z 0.7 '\\\ R N OXYGENATED
Q o5 N N N 0 & ¢ |uTo,<i0
g L ~N N TORR |
 0.30g <<
E 0.2 \Q \ N
@ L
z —0— N X N

0.1 N

0.07

0.05 \ }
0.03

N N{ =

0.02 \\ \\

0.01}
0.007f- \
0..005- >

(2
0.003
2000 1800 1600 1400 1200

"EMITTER TEMPERATURE, °K

Cesium neutral fraction versus temperature of
porous tungsten made by STL (SW10) (G5B).

I1-48




APPENDIX III

ENGINEERING SHEETS
ON
TEST RESULTS
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IONIZER PELLET EVALUATION REPORT

PELLET TIFE £ 6 st ¥o, 1 mrg Feb 1964
"MADE BY £0S PORES PER QM2
AVERAGE  PARTICLE SIZE AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICROM DIAMETER PERCENT MICRON DIAMETER PERCENT

>15 >1.6

7.5 = 5.0 R 1.2 - 1.6 -

5.0 - 3'3.25 — g.ﬁ - %’ﬁ —

3.3 - 2 oy - .

1.5 - 1,0 <00y
) <1.0 I —
PELLET DIAMETER (EFFECTIVE)  0.18 AVERAGE DISTANCE BETWERN PORES p
TRARSMISSION CORFFICIENT |34 ¥ /0= Py THICKNESS _S x 1072 CM, DENSITY ]
PRESSURE 30 (air) TORR tp/ 8t TORR/SEC

CALCULATED TRUE DENSITY
SURFACE TREATMENT Nong
SAMPLE INPORMATION 3¢ Tasvecic:l 47 Jo “SAHA-L. Q. - % NEUTRALS AT 1 Ma/cm
during 49:4\';1«"_).
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/
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/17
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i 121 i 41 14 1 A4 1 "l ll‘l IEESTTI | i

1100 1200 1 1400 1500 01 LHO203 080717 2.3 8T | 2 3 s
lonizer Critical Temperaturs, °K Minimum Neutral Fraction, %

]
\l
Current Density (mo/emz)
| §
~N
™~
I}

Y
1

'S [« S . ]
L i

N
1

T~
~N w

CONCLUSIONS: Neutral fraction low 1-5 ma/cm2 ~ increases rapidly
above. itical temperature high - increases rapidly above

10 ma/cm“., Would probably been better results if sputtering

and etching were used,

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton
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IONIZER PELLET EVALUATION REPORT

peer e £ — 7 A TEST NO.___ % mrs Mo, 1969
4
MDE BY EOS PORES PER CM?
AVERAGE PARTICLE SIZE & ,g’,u_ AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>705 ) >106
7.5 = 5.0 1.2 - 1.6 -
5.0 = 3.3 — 0.8 - 1.2 _
303 - 2025 ooh - 0.8
los - 1.0 < 0.,.[
< 1.0 I —
PELLET DIAMETER (EFFECTIVE) __ 0,18 AVERAGE DISTANCE BETWEEN PORES M
TRANSMISSION COEFFICIENT BY THICKNESS S x 10~2 M, DENSITY $
PRESSURE 10 (air) TORR /bt TORR/SEC

work FunctIon 9.8 * v

SURFACE TREATMENT Nono.
SAMPLE INFORMATION Cveclc:d be{lore *SAHA-L, EQ. - % NEUTRALS AT 1 Ma/cm
+eolt weve con;plefccf

g
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r so
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o l\o - - r— / -
6 /

1/ [15.[ /11
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/ / )4
7 3
V / /!
' . 2 -
L / - " / -
1 tf4d | B . | J . | O . . l 1 1 114t 1 I $1)04 1
1100 1200 1300 1400 1500 .01 H208 0807, .2 % ST 2 3 8

lonizer Critical Temperaturé, °K Minimum Neutral Fraction, %

CONCLUSIONS: Neutral fraction high and increasing with current
density. Critical temperature high. Would probably have bene-
fited from sputtering and etching. Surface crack terminated
test.

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton

I111-3



IONIZER PELLET EVALUATION REPORT

pergEr TeE £ - 3
MADEBY F O €C
AVERAGE PARTICLE SIZE

PARTICLE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT

>17.5
?ns - 5.0
500 - 3-3
303 - 2025
1.5 - 1-0
<1.0

PELLET DIAMETER (EFFECTIVE)
TRANSMISSION CORFFICIENT BY
PRESSURE 10 (air) TORR
CALCULATED TRUE DENSITY

SURFACE TREATMENT £ #¢/. Y- Spedfov
SAMPLE INFORMATION Brazocl by FOS

et
=

_Ylivlli LERLE 'f"‘
4

oud -
/
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T
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o @

Current Density (ma/em?)

&
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/
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CONCLUSIONS:
contaminant or surface closure.

TEST MADE BY: Shelton/Cho

TEST NO. <7
PORES PER CM2
AVERACE PORE SIZE

PORE SIZE DISTRIBUTION
MICRON DIAMETER

>1.6
102 - 106
O.B - 1.2
O.h - 0.8
< 0.k

Mm/wav 19¢4

11 E

AVERAGE DISTANCE BETWEEN PORES ___ u
THICKNESS _5 x 10~2 M, DENSITY 5
sp/at TORR/SEC
WORK FUNCTION 4. 55 Sev

*SAHA-L. EQ. - § NEUTRALS AT 1 Ma/cm

- -

" IRl A L1 1544 | i

1
1100 1200 1300 1400 1500 .01 ©otos 0807, 2.3 87T )

Brazed by E.0.S. - Neutrals high,

REPORT PREPARED BY:

Minimum Neutral Fraction, %

Probable

H. Shelton
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IONIZER PELLET EVALUATION REPORT

perier Tree [ 4

MADE BY £ OO

AVERAGE PARTICLE SIZE 1 —5 /-«
PARTICLE SIZE DISTRIBUTION

TEST Nou__ 4] mrs Jone 1904

PORES PER CM2
AVERAGE PORE SIZE
PORE SIZE DISTRIBUTION

MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 >1.6
705 - 500 1-2 - 106
5.0 - 3.3 — 0.8 - 1.2 -
3.3 - 2,25 0.4 - 0.8 -
105 - 1.0 < Ogh
<1.0 - -
PELLET DIAMETER (EFFECTIVE) __ 0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION COEFFICIENT BY THICKNESS 5 x 10™2 CM, DENSITY .
PRESSURE 10 (air) TORR sp/ bt TORR/SEC
CALCULATED TRUE DENSITY N -
SURFACE TREATMENT & Je ) 4 Cpefliv WORK. FUNCTION .- - v
SAMPLE INFORMATION *SAHA-L, EQ. - % NEUTRALS AT 1 Ma/cm
100
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CONCLUSIONS:

TEST MADE BY: Shelton/Cho

REPORT PREPARED BY:

KOI ot 03 nanrj 2 3

L 4 111t 4 t 11141 1 L
Sy 1 2 3

Minimum Neutral Fraction, %

Poor results due to surface sintering

H. Shelton
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IONIZER PELLET EVALUATION REPORT

reuier TrE_MOD E TEstWo.__ 5 mare Juno [T
mneBY Philips PORES FER CM2
AVERAGE PARTICLE SIZE AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 > 1.6 —
105 - 5.0 1.2 - 106
soo - 3.3 °¢8 - 1.2
3.3 - 2025 ooh - 0.8
1.5 - 100 < OOh
<1.0 I . —
PELLET DIAMETER (EFFECTIVE) 0.18 AVERAGE DISTANCE BETWEEN PORES B
TRANSMISSION COEFFICIENT ~ 6 X/0 ¥ BY THICKNESS 5 x 10-2 CM, DENSITY
PRESSURE 10 (air) TORR ap/ bt TCRR/SEC
CALCULATED TRUE DENSITY q -
SURFACE TRRATMENT £ Al Y Sypnadt. ) work FoncTION 4. 72 L
s IPORMATION Dpcyecsocl ~¥0 /e *SAHA-L. EQ. - % NEUTRALS AT 1 Ma/cm
duvm} '{"-&“‘
T Y I | ™77 171_‘ 100 p—y T TYTII Y T]
80
as / - - -
/ 60
= -y - -
// o
30
-&/‘ ’s N'g 2
p— 1/ - \g o -
¥y U 13
‘a .
- \8 ‘,q’ - é ‘0 - / -
/ - Wi
4
/ 1/ /
/ ' ? %
- ) / ) ~ - / _4
RNy & 4 g 1 [ . | N . | 1 | Il i L1l 1 i
1100 1200 1300 1400 1500 0l o208 05071 .23 837 | 23 8
lonizer Critical Temperaturd, °K Minimum Neutral Fraction, % '

CONCLUSIONS: Valid test on clean tungsten (by sputtering) but
high neutrals because of poor pore count.

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton
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IONIZER PEILET EVALUATION REPORT

pELLE? TIPE £ 3
MADE BY £
AVERAGE PARTICLE SIZE [ -~ "/f/,:

PARTICLE SIZE DISTRIBUTION
MICRON DIAMETER :

>17.5
705 - 500
500 - 3-3
3.3 - 2,25
105 - 1.0
<10
PELLET DIAMETER (EFFECTIVE) __ 018
TRANSMTSSION CORFFICIENT A | X /0”5 %BY
PRESSURE 10 (air) TORR

CALCULATED TRUE DENSITY

mmé

SURFACE TREATMENT £ fcl. <+ Sw,{, oy

SAMPLE INFORMATION %= Decyecoiit A 905,

dtlh*‘ -lfif
100
-_111 1T T 17 "“" 6
- /- o
- / -
// _ 40
- 30
-.é/ o) o~
£ 20
<
-2
- \&g i’o - Elo
u ST 7 ] 28
v
/ 4
' 3
2
- -
Ty 4

£t 1 1 | | 1 4 1
1100 12& 1300 1400 1500
lonizer Critical Temperaturd, °K

TEST No. O _DatE Junc 1964
PORES PER CM2
AVERAGE PORE SIZE

PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT

>1.6
1.2 = 1.6
ooe - 1.2
o.h - 098
< 0.4

AVERAGE DISTANCE BETWEEN FORES ________
sp/ bt TORR/SEC

WORK FUNCTION 4.7 2 *ev

*SAHA-L. EQ. - % NEUTRALS AT 1 Ma/cm

T Tty L BB AL A ¥
A
- / -
- /// -t
Q
- -
/
/
A
- L

L ilidl e/ LLAlil i

‘.01‘ OO 08OT,) 23 BT | 23 8

Minimum Neutral Fraction, %

CONCLUSIONS: Repeat test with etching and sputtering.

Excellent results,

TEST MADE BY: Shelton/Cho

REPORT PREPARED BY: H., Shelton
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IONIZER PELLET EVALUATION REPORT

perzer Tves £ 4 TEST No. /. DATE ] /e::c , 170
MADE BY £ 5 PORES PER CM2
AVERAGE PARTICLE SIZE AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT

>1.5 —_— >1.6 -

7-5 - 5.0 1.2 - 1'6

5.0 - 303 —mr— 0.8 - 1.2 —

3.3 - 2,25 I 0.4 - 0.8

1.5 - 100 < O.h

<1.0 - -
PELLET DIAMETER (EFFECTIVE) __ 0.18 AVERAGE DISTANCE BETWEEN PORES n
TRANSMISSION COEFFICIENT 7V 2 X /0~ S#BY THICKNESS 5 x 10"2 CM, DENSITY ]
PRESSURE 20 (air) TORR s/t 20RR/SEC
CALCULATED TRUE DENSITY .
SURFACE TREATMRYT e lr o N fed 1o WORK FUNCTION H.76 v
SAMPLE INPORMATION # Tnciic i a)00F,  “SAHA-L, EQ. - % NEUTRALS AT 1 Ma/cm
dullub fest
T rJvyvrrrrry u]r'r: 100 e TIY Y TYTI 1 T.
o / -y e -

88 88

3

L
l .
Current Density (ma/mnz)
L}
\
i

~

)
3 ;
:\7 :
. / «s/ 4 N ) .
4 L
[/ )

/
/
. 2 A
pe / - p / -
Iy & ~_A1 1 1 1 1 - l L 1 /l 1 1 4111 J
1100 1200 1300 1400 1500 01 Qo203 08071 2.3 8T | t 3 8
lonizer Critical Temperaturd, °K Minimum Neutral Fraction, %

CONCLUSIONS: Superior highocurrent densitz performance,
About 1/2% neutrals at 1450 K for 20 ma/cm<,

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton
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IONTZER PELLET EVALUATION REPORT

peizer TeeE (O -/ TEST NO. & DATE -Au.;;; [¢4
MapE BY Actvemct PORES FER QW2
AVERAGE PARTICLE SIZE ' AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
mcna% PERCENT MICRON DIAMETER PERCENT

>705 >1.6

7.5 - 5.0 1.2 - 1.6

5.0 = 3.3 - 0.8 - 1.2 R

3.3 - 215 D.h - 0;8

1.5 - 1.0 - <00 S

<1.0 -
PELLEY DIAMETER (EFFECTIVE) __ 0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION CORFFICIENT 4,3 ggg"g;n THICKNESS _§ x 10~2 M, DEMSITY ___ 5
PRESSURE 30 (air) TORR s/t T0RR/SEC

CALCULATED TRUE DENSITY

.65 -
SURFACK TREADENT £ tl.i1q woRx FUsCTION 4 . & »v
SAMPLE INFORMATION # Al {~:1, Qup- *SAHA-L., EQ. - § NEUTRALS AT 1 Ma/cm
Pher‘ machined 4 el o7 Coa,
- B T 1 0 1 7T 1 lfl_‘ lw’_' LI BB RLI 1 LIR L3 AL ) § l_‘
80
‘ // @
/ 40
‘ 20
é//' o
20
$
= =~ g = -
Y/ >
310
- ‘F - é a o -
& - ™3 p -
B ¢
p -y 6 4 = -y
4 A VAR 1D
2 ' /4
! | /. I ‘f/ ]
4 I 4 £ 1 I T - lv l yi eIt 'R 1 1 Ll £ e

1100 1200 1300 1400 1500 L0y o203 o80T} 2.3 S} 23 8
lonizer Critical Temperaturé, °K Minimum Neutral Fraction, %

CONCLUSIONS: DPerformance improved after re-—etchln{,. However,
results arc very poor bhecause of low, non-uniform pore count,

TEST MADE BY: Shelton/Cho  REPORT PREPARED BY: H. Shelton
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IONIZER PELLET EVALUATION REPORT .

reer veE (/0 (G1t) TEST No. 9 mmJ'uly 1964
MADE BY £0S PORES PER CM2
AVERAGE PARTICLE SIZE {- /O L2 AVERAGE PCRE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 >1.6
7-5 - 500 ——— 1.2 - 1.6
5.0 = 3.3 0.8 - 1.2 -
303 - 2.25 Ooh - 0.8
1.5 - 1¢° < O.h
<1.0 - I
PELLET DIAMETER (EFFECTIVE) __ 0.18 AVERAGE DISTANCE BETWEEN PORES n
TRANSMISSION COEFFICIENT {. 07 x (0~ *BY THICKNESS _S x 1072 CM, DENSITY )
PRESSURE 10 (air) TORR sp/ 8t TCRR/SEC
CALCULATED TRUE DENSITY " .
SURFACE TREATMENT £icl, + Spullcy WORK FUNCTION .85 i
SAMPLE INFORMATION B~ Decyec sl 11 Jr, *SAHA-L, EQ, - § NEUTRALS AT 1 Ma/cm
d(n:u\: ';-_".‘l(.n.;
] 3
LV 1 T 1T ¥t LR I 7]' ]00 | LER BB AL A TN | .T
| - 1, 80
p— -l ad -
60 ,
b . // -y - -
1, 40
30
-!:/ ‘ NE 2
<
. / 13 F -
& £10 o
= \é / n 2 = A -1
I 7 8 - 5
- 7 / 1 ¢ . -
. o 6 2
=4 7
e / CV - 8 e ,o e
/ 4 b
/[ / A
/ 11/

2 7
e / - - / -
1.1 1 i i1 | 1 L L AlllL A A1 1111 1 4

1 I 2 o
1100 1200 1300 1400 1500 O o253 o807, 2.3 ST | 23 86
lonizer Critical Temperaturs, °K Minimum Neutral Fraction, %

CONCLUSIONS: Show steady increase of neutrals with currept
density. Go critical temperature. 2% neutrals at 1430
for 20 ma/cm#,

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H, Shelton
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IONIZER PELLET EVALUATION REPORT

peier treE 12 -] (Tl Gesl)
MADE BY Actyoniod
AVERAGE PARTICLE SIZE

PARTICLE SIZE DISTRIBUTION
MICRON DIAMETER  PERCENT

>15
705 - S.O
5'0 - 3-3
3.3 - 2.25
105 - 1:0
<1.0

PELLET DIAMETER (EFFECTIVE) __ 0.18
TRANSMISSION COEFFICIENT very Jow  BY
PRESSURE ____ 10 (air) TR
CALCULATED TRUE DENSITY -
SURFACE TREATMENT £ jcl o+ Snedlcn
SAMPLE INFORMATION Su{ij\_l_;ffl 'l’IM(,.’:.-'Uf‘A
Ond r‘;d o{ Ch. i

DATE J'M ,f.(,.J / {/} { "i

TEST No._ /D
PamsmmZ
AVERAGE PORE SIZE

PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT

>1.6
102 had 1.6
0.8 - 1.2
o'h - 008
< 0.4

AVERAGE DISTANCE BETWEEN PORES "

THICKNESS S x 10-2 CM, DENSITY ___ %

AP/ At Tm/sw
worx FuscrIon ¢, C 9 * o

¥SAHA-L. BQ. - % NEUTRALS AT 1 Ma/cm

| TV T 11! TN 'oo_l LI L3 AL BN T O] ¢ ]
| /7' i :
o -t o -
60
. 71 °F i
] 40
/ ‘ k 4]
& o
§ 20
F 2
= ) 3 3‘“'- .
/ ;
- - -] - L
v}
/ = 4
V : 3
&- 2 —4—
_ 1 ,
iwll ll‘Lvllbl Lt 4 ‘ i L 12111 le/l/lll i i
1100 1200 1%0 1400 1500 .01 XH2os o507} 2.3 ST ) 23 8
lonizer Critical Temperaturd, °K Minimum Neutral Fraction, %
CONCLUSIONS: Low permeability because of braze penetration
on reverse side, Test poor, but possibly invalid.
TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H, Shelton
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IONIZER PELLET EVALUATION REPORT

peragr TeeE 1-20 (Gi1) Aftes £lex  TEST No._ [/ mre Aua J5¢Y
MADE BY £0O8 Pamsvaxm# !
AVERAGE PARTICLE SIZE ! — /O 2o AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PCRE SIZE DISTRIBUTION
MICRON DYAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 >1.6
7.5 - 500 1.2 - 1.6
5.0 = 3.3 — 0.8 - 1.2 -
3.3 - 2,25 — 0.4 - 0.8 -
1.5 - 1.0 - < 0.
<1.0 - D
PELLET DIAMETER (EFFECTIVE)  0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION COEFFICIENT '_»1.3)![0’5 BY THICKNESS 5 x 10°2 M, DENSITY 3
PRESSURE _ 10 (air) TR ap/ 8t T08RR/SEC
CALCULATED TRUE DENSITY »
SURFACE TREATMENT £ /o x WORK FUNCTION 4 .83 *ev
SAMPLE INFORMATION *SAHA-L. EQ. - § NEUTRALS AT 1 Ma/cm

LL) "

i
-
-
-t
-
-
-
=
L
-
-
}
8
1
-
>
-
-
-
-

l',.\

N
8 88 883

T
N
Current Density (ma/cm?)
1
~
N\
1

10 A0
- é‘ - 8 - /a’ el
- '\° - - / L~
7 : -
p / 0 - - [+ 3% -
L 4

NN
N

/ A

TNy AN . | [ | [ . | L - s el BT i

r X
1100 1200 1300 1400 1500 .01 o208 03077 2.3 57T 23 8
lonizer Critical Temperaturé, °K . Minimum Neutral Fraction, %

CONCLUSIONS: After elox machining. Critical temperatures
at high current density higher and more sloppy after elox.

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H, Shelton
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IONIZER PELLET EVALUATION REPORT

—— Ie
vozer s £ Y = Te (J070)
MOoEBY _E(OS
AVERAGE PARTICLE SIZE _2 -~ & 44

PARTICLE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT

>17.5
7-5 - 5.0
Soo - 3-3
3-3 - 2o25
1.5 - 1o0
< 1.0

PELLET DIAMETER (EFFECTIVE) 0,18

TRANSMISSION COEFFICIENT .9 x /n~S By

PRESSURE 10 (air) TORR
CALCULATED TRUE DENSITY

surpACE TREATMENT £ /(. ~ Spodfor
SAMPLE INFORMATION

| LELER] l!l171_4

= 7
- /A

|
lo,
~

1

.//-
/A A

1 J1L1 . LAl .

1
3100 1200 1300 1400 1500
lonizer Critical Temperaturé, °K

1
N
1
Current Density (mn/::mz)

T

N
AN
1

TEST NOw_/ 2 mate Sept 140"
PORES PER CM2
AVERAGE PORE SIZE

PORE SIZE DISTRIBUTION
MICRON DIAMETER

>1.6

1.2 - 1.6

008 - 1.2

0.4 - 0.8

< 0.4
AVERAGE DISTANCE BETWEEN PORES p
THICKNESS 5 x 102 M, DENSITY _____ %
bp/ At TORR/SEC
WORK FUNCTION 4.2 3 * v

*SAHA-L. EQ. - % NEUTRALS AT 1 Ma/cm

—
-
od
-

14} 1 T L] L\

8 88 &8

-—
o

o o

E.N

Z 11
I o/ i

] L 1 1111 i L 1141 1
0f O208 0507, 2.3 ST | 23 8

Minimum Neutral Fraction, %

CONCLUSIONS: Knees rounded at low current density. Good
high current density performance (~2 percent neutrals at

1420°K for 20 ma/cm%)

TEST MADE BY: Shelton/Cho

REPORT PREPARED BY: H. Shelton
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IONIZER PELLET EVALUATION REPORT

, .
PELLET TYPE & A oo
MaDE BY Huqhes
AVERAGE PARTICLE SIZE /.72

PARTICLE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT

>15
705 - 500
500 - 303
3.3 - 2.25
105 - 1.0
<1.0

PELLET DIAMETER (EFFECTIVE)  0.18
TRANSMISSION COEFFICIENT 5, QX /2”9 * ny
PRESSURE 20 (air) TORR
CALCULATED TRUE DENSITY

SURPACE TREADMENT £/ h <+ Sputfov

SAMPLE INFORMATION * Tnevecicd 2 /o

duﬁ#ﬁ test

lonizer Critical Temperaturd, °K

T T 1 Trr 1 rrY |/| T 100
/ 80
- 60
o : / =
// )
RS dgﬁm
/ !
¥ | |z
3, A . Elz-
3
/A RVA R iy S
= / o] -y ‘3
/17 ;
4 / )
2
1301 L1 p L1 1 i.bl l
1100 1200 1300 1400 1500

TEST No. 13

" paATE Sep? /1944
PORES PER CM2 -

AVERAGE PORE SIZE

PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT

>1.6
1.2 - 1.6
0.8 - 1'2
o.4 - 0.8
< 0.

AVERAGE DISTANCE BETWEEN PORES ‘ B

THICKNESS _5 x 10~2 CM, DENSITY
tp/ st
WORK FUNCTION 4.8/

*SAHA-L. EQ. - § NEUTRALS AT 1 Ma/cm

*

TORR/SEC

2V

L T TV ] LB BLA AL ¥

e

o

1 L1101t 4 Lliiaul 1

o208 O80O7T,] 2.3 S | 2 3

.01
Minimum Neutral Fraction, %

CONCLUSIONS: Neutrals low and indicate high pore count,
Critical temperature unaccountably high.

TEST MADE BY: Shelton/Cho

REPORT PREPARED BY:

H.
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TONIZER PELLET EVALUATION REPORT
e TrPE £0S Rin~k Ma & (62) mest wo.__1Y mate Ocd . 1T€H

MADE BY F(OS PORES PER CM2
AVERAGE PARTICLE SIZE AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT

>1.5 : >1.6

705 - 500 1.2 - 106

5.0 - 3.3 0.8 - 1.2

3.3 - 2,25 oy - 0.8 -

105 - 1.0 < 0.!3

< 1.0
PELLET DIAMETER (EFFECTIVE)  0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION COEFFICIENT §.0 g/r)"-" BY THICKNESS S x 10-2 CM, DENSITY %
PRESSURE 10 (air) - TORR s/t TORR/SEC.

CALCULATED TRUE DENSITY

™
SURFACE TREATMENT £ tcb + Spulter ~— WORK FUNCTION 4.8 i
SAMPLE INFORMATION *8AHA-L, EQ, - § NEUTRALS AT 1 Ma/om
o B T T l’l_‘ wo_I L B8 LU TTTITT 7 Y
80
- / -y p -
/ 60
e / - = -y
// 40
/, 30
& , o .\
o 5 20 —1
b j / - g - -
o Q x ‘N
5 ; 210
— ~ / - 5 - =
C x8 8
/ 1z .¢C .
R y 45 é N 4
/O o O
77 :
V / 3 /

- / ~y ' e / -
4 1 01 1 1 L 11 . 1 L (i Li1 A 1 1411 1 i
1100 1200 1300 1400 1500 ,01 HO208 080T, 2.3 85T 2 3 8

lonizer Critical Temperaturé, °K Minimum Neutral Fraction, %

CONCLUSIONS: Neutrals and critical temperature continuously
increase with current densities. Knees sharp a.8d solid
tungsten appearing. (About 2% neutrals at 1430 K for 20 ma/cm ) 8

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton

III-15



TONIZER PELLET EVALUATION REPORT

pesier T LB 2% To rest 0. /5 DATE Mev 12, 196Y
wmeE BY £OS PORES PER CM2
AVERAGE PARTICLE SIZE /—371477\; L.7- 51 W AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>7o§ etrrr— >1¢6 —aroo—
705 - 5-0 102 - 106
5.0 had 303 enm—— 0.8 - 1.2 PO,
303 - 2‘25 o.h - 0.8
105 - 1.0 <00h
<1.0 .
PELLET DIAMETER (EFFECTIVE) _ 0,18 AVERAGE DISTANCE BETWEEN PORES B
TRAxSssToN comrrrcIENt 3,9 X /0°5 BY THICKNESS _S x 10~2 CM, DENSITY $
PRESSURE 10 (air) ~ TORR o/ 8t PORR/SEG
CALCULATED TRUE DENSITY q -
SURFACE TREATMENT .o Spudler WORK FUNCTION Y. v
SAMPLE INFORMATION *3AHA-L. EQ. - % NEUTRALS AT 1 Ma/cm
_1 LR | 1T 1T ¥ T v 1 } | 1 ‘m - ] | LB Al 1 1 18 kAl 1 L
- /r 80
60
L / - g -
7 40
30
& o
o - E =] / =~
; : /
- \6. /' — E ‘2 pom C -
[l 1% /
- / - 2 - <>
7 S il
4

Iy 1.0 1% F . . | j W . | ' 1 11000k 1 1 i alal 1
e

1100 1200 1300 1400 1500 01 Lotos osoOry 2.3 ST ) 23 8
lonizer Critical Temperaturd, oK Minimum Neutral Fraction, %

CONCLUSIONS: Critical temperature high - rounded knees.

Work function high at low current density probab%y because 2
of oxygen associated with tantalum. (2% at 1600 K at 20 ma/cm’).
TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton

I1I-16




IONIZER PELLET EVALUATION REPORT

reuer e LB & 7% Te. TEsT ¥o._ /A patg Mov 20 1704
MADE BY £05 PORES PER CM2
AVERAGE PARTICLE SIZE /-3, 7o NNZVE w AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 >1.6
7.5 = 5.0 P 1.2 - 1.6 -
500 - 303 0.8 - 1.2 .
3.3 - 2,25 0.4 - 0.8 —
1.5 - 1.0 < 0.4
<1.0
PELLET DIAMETER (EFFECTIVE) __ 0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION CORFFICIENT 5,4 X /05 #BY THICKNESS _5 x 10~ C, DENSITY ]
PRESSURE 10 (air) TORR s/ bt T08R/SEC
CALCULATED TRUE DENSITY *
worx FuncTIoN .9 * v

SURFACE TREATMENT Eloy 4 Speifer
SAMPLE INFORMATION % Tncyeatc:l 3o *3AHA-L. EQ. - § NEUTRALS AT 1 Ma/cm
dur::‘-é tect,

100
- T 1 T 1T 1 ¥ 77 l" |_1 P‘ LR AAALS } J | 1 3 1L ) | 'q
. 80
pas —-— - -
/ 60
‘/) °
/1 ”
s &
& 97 I o
- \a. / - g b= /' pe
- & 745 °F 7 ]
y § 4 /
o) E &)
p g -1 s e
// / (¥) , /
4
7 / 4
/ 3
- 2
: /
:iv ~-y ud -
- ' 1 ‘ L £ 2 e 1 1 . l 1 ' 2142 6/ 1 1143 1 i
1100 1200 1300 1400 1500 L1 H2L08 08071 2.3 8T | 2 3 8
fonizer Critical Temperaturd, °K Minimum Neutral Fraction, %

CONCLUSIONS: Criticgl temperatureg and neutrals high.
(7% neutrals at 1600 K at 20 ma/cm*®)

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton
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IONIZER PELLET EVALUATION REPOR®

pereer s LB 1076 Ta TEST ¥O. )7 matE Mov 257 19¢9
mpeBY EOS PORES FER CM2
AVERAGE PARTICLE SIZE -3y Ta, L7-S4¢ W  AVERAGE PORE SIZE
7 3
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 >1.6
7.5 - 500 1.2 - 1.6
Soo - 303 0.8 - 1.2
303 - 2025 ooh - 0.8 »
1.5 - 1.0 <00h
<1.0 - .
PELLET DIAMETER (EFFECTIVE)  0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION CORFFICIENT 4, Sy /0" # mx THICKNESS _5 x 10~2 CM, DEMSITY 5
FRESSURE _____E_(&g)_________‘r@ ap/ At TORR/SEC
CALCULATED TRUE DENSITY o — -
SURFACE TREATMENT WORK FUNCTION 4 , 1 5 ' ov
SAMPLE INFORMATION K Thenecseel 107y *SAHA-L, EQ, - % NEUTRALS AT 1 Ma/om
Cﬂur:n 1*{*&
100
O B BN T 1.1 Ti1T1T ]V 1 v TIvInT ¢ TYVIIq Y
n /Zr 1 ©
/, 40
/ 40
/ »
-é/‘ % 20
e -l/i s / -
: 4 s /
é .g 10 m
p— ° / -1 8 8 ol r/ -
~ - - -
. A B /
/ . /
/ // . ‘
/ |
{4 4 ¢ 1 J N . [ & I Il lal 14 1 1 2144 § {
1100 1200 1300 1400 1500 0 Oto0s 0807,y 2.3 ST )] 23 8
lonizer Critical Temperaturd, °K Minimum Neutral Fraction, %

CONCLUSIONS: Same general characteristics of Ta series (15-17) -
rounded drooping knees - oxygenaged - high critical tempera-
tures. (1 1/2% neutrals at 1600°K for 20 ma/cm?).

'TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton
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IONIZER PELLET EVALUATION REPORT

PELLET TYPE G -4 (Bav N 2) Test wo._[ ¥ mrs Dec  19¢Y
MADE BY £0OS PORES PER CM2
AVERAGE PARTICLE SIZE AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER
>1.5 >1.6
7.5 - 500 1.2 - 1.6
500 - 303 0.8 - 1.2
3'3 - 2025 OOh - 0.8
105 - 1.0 < Ooh
<1.0 - —
PELLET DIAMETER (EFFECTIVE) _ 0.18 AVERAGE DISTANCE BETWEEN PORES B
TRANSMISSION CORFFICIENT [.3 x/0°7 BY THICKNESS _5 x 10~2 CM, DENSITY £
CALCULATED TRUE DENSITY L Qo -
SURFACE TREATMENT S fcl 4 Sputteyr WORK FUNCTION __J . —eY
SAMPLE INFORMATION Rodov  2lowinc  “SaHA-L., EQ, - $ NEUTRALS AT 1 Ma/cm
d.
100
- T 1 T 1 1 i v 1 | AL - A | 1 AR AL 1 | | TYed L | v
/]r » -
/ 60
7 °
/, 30
Y 0 & Y
§ 20 -
\ N
- // 4 g - i -
& o ® 0
N 2 10
™~ \o / - 8 P =
- ‘\o / - -~ 8 - -
6 E 6 %
po - k=) e -
/ / o /
/7 : /
/ / 3
// 2
,/’rv
RN | TS 4 1L S IT: ciedaal 2
1100 1200 1300 1400 1500 01 HLOHS 0507 } 2.3 ST 2 3 o
lonizer Critical Temperaturd, °K Minimum Neutral Fraction, %

CONCLUSIONS: Good current density performance. (1% at 1430°K
at 20 ma/cmé). '

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton
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IONIZER PELLET EVALUATION REPORT

_ s,
pmmmG "[ ( Bay Q) rest No. /'] DATE S 1GGsS
mapEBY E0O° PORES PER CM2
AVERAGE PARTICLE SIZE AVERAGE PORE SIZE

PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 >1.6
7.5 - 5.0 . 1.2 - 1.6
5.0 - 303 008 - 102 R
303 - 2025 oob - 0.8
1.5 - 1.0 — < 0.
< 1.0
PELLET DIAMETER (EFFECTIVE) __ 0,18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION COEFFICIENT BY THICKNESS _S x 10~2 CM, DENSITY ____ £
PRESSURE 20 (air) TORR bp/ 8t TCRR/SEC
CALCULATED TRUE DENSITY hr“ rt«u »
SURFACE TREATMENT work FonetIoN 4. 87 (85 Pher
SAMPLE INFORMATION *SAHA-L. EQ, - % NEUTRALS AT 1 Ma/cm
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1100 1200 1300 1400 1500 .01 ‘9203 o8or.] 2.3 ST ) 23 8

lonizer Critical Temperaturd, °K Minimum Neutral Fraction, %

CONCLUSIONS: After elox machining, surface carbided upon initial
operation. (Low criticals and low neutrals). After oxygen
and sputtering results nearly identical with test number 18.

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton

III-20



IONIZER PELLET EVALUATION REPORT

peiEr e G - D o - Coihidee] TEST NO, 210 DATE Jri. /R C &
MADE BY [Hi1c o= PORES PER CM2
AVERAGE PARTICIE SIZE 4.8 ¢c AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER
>1.5 » > 1.6
7.5 =50 - 1.2 - 1.6 R
5.0 = 3.3 0.8 - 1.2
3.3 - 2.25 O.h - 0.8
1‘5 - 100 < Ovh
<1.0
PELLET DIAMETER (EFFECTIVE)  0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION CORFFICIENT &) ¥ /0~ BY THICKNESS _5 x 10-2 CM, DENSITY 5
PRESSURB 10 (air) TORR ap/ Bt TORR/SEC
CALCULATED TRUE DENSITY .
SURFACE TREATMENT S peitc e WORK FUNCIICN Y
L]
SAMPLE INFORMATION *SAHA-L. EQ. - % NEUTRALS AT 1 Ma/cm
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lonizer Critical Temperaturé, °K Minimum Neutral Fraction, %

CONCLUSIONS: oGenerally lower critical temperature and neutrals
(1/2% at 1430°K at 20 ma/cm?).

TEST MADE BY: Shelton/Cho REPORT PREPARED BY: H. Shelton
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TONIZER PELLET EVALUATION REPORT

PELLET TYPE /O -/ (c-18eR)
apE BY Asiromatl

AVERAGE PARTICLE SIZE

PARTICLE SIZE DISTRIBUTION
MICRON DIAMETER

>1.5
705 - Soo
Soo - 303
303 - 2-25
los - 100
<10

PELLET DIAMETER (EFFECTIVE) 0.18
- 1] 3
TRANSMISSION COEFFICIENT 3 ¥ /O H ¥py

11 B

PRESSURE 10 (air) TORR
CALCULATED TRUE DENSITY

SURFACE TREATMENT Edcl w4+ Ml e
SAMPLE INFORMATION & Tnerent ol £0 7,
duv:w;, "‘«S 1
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TEST No. 2 { patE Mav l 1968~
PORES PER CM2
AVERAGE PORE SIZE

PCRE SIZE DISTRIBUTION
MICRON DIAMETER

>1.6
1.2 - 1.6
0.8 - 102
o.h - 0.8
< 0.k

AVERAGE DISTANCE BETWEEN PORES n

THICKNESS 5 x 10-2 CM, DENSITY £

ap/at TORR/SEC
woRk FuNcTION 4. & " ev
*3AHA-L. EQ. - $ NEUTRALS AT 1 Ma/cm

‘00  § 1 1B 4] 1 1 118 1 h |

S 88 8 8

‘ _4 ' 1111 1 4 1 114 3 I
0 o208 o807,y 2.3 SJ | 23 8

Minimum Neutral Fraction, %

CONCLUS&ONS: Excellent results below 10 ma./cm2 (3% neutrals

at 1420°K at 20 ma/cm2).

TEST MADE BY: Shelton/Hall

REPORT PREPARED BY: H, Shelton
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IONIZER PELLET EVALUATION REPORT

perzer TreE (5 A R TEST NO. 2. DATE ﬁ'/m: 3 [ /S’(" i
MapE BY Hiue b PORES PER CM2
AVERAGE PARTICLE SIZE AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER PERCENT MICRON DIAMETER PERCENT
>1.5 >1.6
7-5 - Sco 1.2 - 1c6
500 - 3-3 0.8 - 1'2
303 - 2025 Ooh - 0.8
los - 1.0 < Doh
<1.0 - I
PELLET DIAMETER (EFFECTIVE) 0.18 AVERAGE DISTANCE BETWEEN PORES p
TRANSMISSION CORFFICIENT yeyuy [l ) BY THICKNESS _S x 10-2 C, DENSITY $
PRESSURE 10 (air) TORR Y 20RR/SEC

CALCULATED TRUE DENSITY

. Q »
SURFACE TREATMENT Flel ¢ Spuflre work puNcTION 7. v
SAMPLE INFORMATION *3AHA-L, EQ. - § NEUTRALS AT 1 Ma/cm
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lonizer Critical Temperaturd, °K Minimum Neutral Fraction, %

CONCLUSIONS: Results very good up to 5 ma/cm‘?‘. Couldn't
exceed because of very low permeability.

TEST MADE BY: Shelton/Hall REPORT PREPARED BY: H. Shelton
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JONIZER PELLET EVALUATION REPORT

PELLET TYPE _G S5 b TEST No. 23 w4 /C5
MADE BY ST /. PORES PER CM2 ‘
AVERAGE PARTICLE SIZE /0.  (Coheriic t.) AVERAGE PORE SIZE
PARTICLE SIZE DISTRIBUTION PORE SIZE DISTRIBUTION
MICRON DIAMETER . PERCENT MICRON DIAMETER PERCENT

>1.5 : >1.6

7‘5 - 500 1.2 - 1.6

5.0 = 3.3 0.8 - 1.2 .

303 - 2-25 ooh - 0.8

105 - 100 < Ooh

< 1.0
PELLET DIAMETER (EFFECTIVE) __ 0.18 AVERAGE DISTANCE BETWEEN PORES n
TRANSMISSION COEFFICIENT ¥,/ X/0°5" A gy THICKNESS _5 x 10-2 CM, DENSITY
PRESSURE 10 (air) TCHRR ap/ % T0RR/SEC

CALCULATED TRUE DENSITY oy .
v o, S

SURFACE TREADMENT ot clied 4 ¢, ttered —WORK FUNCTION Y

SAMPLE INFORMATION A~ ol end of Fes];  “SaHA-L. EQ. - % NEUTRALS AT 1 Ma/cm
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lonizer Critical Temperaturé, °K Minimum Neutral Fraction, %

CONCLUSIdNS: Results very good up to 10 ma/cmz. Neutral fraction
and critical temperature low. ZIffect of pore density abruptly seen
at higher current densities.

TEST MADE BY: Shelton/Hall REPORT PREPARED BY: H, Shelton
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